Distance-Based k^m-Anonymization of Trajectory Data

The publication of trajectory data opens up new directions in studying human behavior, but it is challenging to perform in a privacy-preserving way. This is mainly because, the identities of individuals, whose movement is recorded in the data, can be disclosed, even after removing identifying information. Existing works to anonymize trajectory data offer privacy, but at a high data utility cost. This is because, they either do not produce truthful data, which is important in many applications, or are limited in their privacy specification component. This paper proposes an approach that overcomes these shortcomings by adapting km-anonymity to trajectory data and by using distance-based generalization. We also develop an effective and efficient anonymization algorithm, which is based on the apriori principle. Our experiments verify that this algorithm preserves data utility well, and it is fast and scalable.

[1]  Spiros Skiadopoulos,et al.  Anonymizing Data with Relational and Transaction Attributes , 2013, ECML/PKDD.

[2]  Bradley Malin,et al.  COAT: COnstraint-based anonymization of transactions , 2010, Knowledge and Information Systems.

[3]  Francesco Bonchi,et al.  Anonymization of moving objects databases by clustering and perturbation , 2010, Inf. Syst..

[4]  David J. DeWitt,et al.  Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[5]  Benjamin C. M. Fung,et al.  Differentially Private Trajectory Data Publication , 2011, ArXiv.

[6]  Laks V. S. Lakshmanan,et al.  Anonymizing moving objects: how to hide a MOB in a crowd? , 2009, EDBT '09.

[7]  Aristides Gionis,et al.  Assessing data mining results via swap randomization , 2007, TKDD.

[8]  Yücel Saygin,et al.  Privacy in mobility data mining , 2011, SKDD.

[9]  Jian Pei,et al.  Utility-based anonymization using local recoding , 2006, KDD '06.

[10]  Alex Alves Freitas,et al.  A critical review of multi-objective optimization in data mining: a position paper , 2004, SKDD.

[11]  Vania Bogorny,et al.  C-safety: a framework for the anonymization of semantic trajectories , 2011, Trans. Data Priv..

[12]  Panos Kalnis,et al.  Local and global recoding methods for anonymizing set-valued data , 2010, The VLDB Journal.

[13]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Yücel Saygin,et al.  Towards trajectory anonymization: a generalization-based approach , 2008, SPRINGL '08.

[15]  Philip S. Yu,et al.  Top-down specialization for information and privacy preservation , 2005, 21st International Conference on Data Engineering (ICDE'05).

[16]  Aris Gkoulalas-Divanis,et al.  Utility-guided Clustering-based Transaction Data Anonymization , 2012, Trans. Data Priv..

[17]  Aris Gkoulalas-Divanis,et al.  PCTA: privacy-constrained clustering-based transaction data anonymization , 2011, PAIS '11.

[18]  Josep Domingo-Ferrer,et al.  Microaggregation- and permutation-based anonymization of movement data , 2012, Inf. Sci..

[19]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[20]  Bradley Malin,et al.  k-Unlinkability: A privacy protection model for distributed data , 2008, Data Knowl. Eng..

[21]  Wei Jiang,et al.  Privacy-Preserving Location Publishing under Road-Network Constraints , 2010, DASFAA.

[22]  Josep Domingo-Ferrer,et al.  On the privacy offered by (k, δ)-anonymity , 2013, Inf. Syst..

[23]  Francesco Bonchi,et al.  Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[24]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[25]  Laks V. S. Lakshmanan,et al.  Trajectory anonymity in publishing personal mobility data , 2011, SKDD.

[26]  Philip S. Yu,et al.  Privacy-preserving data publishing: A survey of recent developments , 2010, CSUR.

[27]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[28]  David J. DeWitt,et al.  Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.

[29]  Benjamin C. M. Fung,et al.  Privacy-preserving trajectory data publishing by local suppression , 2013, Inf. Sci..

[30]  Benjamin C. M. Fung,et al.  Walking in the crowd: anonymizing trajectory data for pattern analysis , 2009, CIKM.

[31]  Aris Gkoulalas-Divanis,et al.  Utility-preserving transaction data anonymization with low information loss , 2012, Expert Syst. Appl..

[32]  Daniel Kifer,et al.  Injecting utility into anonymized datasets , 2006, SIGMOD Conference.

[33]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[34]  Claude Castelluccia,et al.  Differentially private sequential data publication via variable-length n-grams , 2012, CCS.

[35]  Anna Monreale,et al.  Movement data anonymity through generalization , 2009, SPRINGL '09.

[36]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[37]  Li Xiong,et al.  A two-phase algorithm for mining sequential patterns with differential privacy , 2013, CIKM.

[38]  Philip S. Yu,et al.  Anonymizing transaction databases for publication , 2008, KDD.

[39]  Panos Kalnis,et al.  Fast Data Anonymization with Low Information Loss , 2007, VLDB.

[40]  Pierangela Samarati,et al.  Generalizing Data to Provide Anonymity when Disclosing Information , 1998, PODS 1998.

[41]  Pierangela Samarati,et al.  Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..

[42]  Nikos Mamoulis,et al.  Privacy Preservation in the Publication of Trajectories , 2008, The Ninth International Conference on Mobile Data Management (mdm 2008).