The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe

Abstract• We review current knowledge about the biology of the genus Acacia, and Acacia dealbata Link (silver wattle) in particular, as an invader in Europe, focusing on (i) the biology of the genus Acacia; (ii) biological attributes that are important for the invasiveness of the genus and A. dealbata; (iii) possible hypotheses for the invasion success; and (iv) control methods.• Several Australian wattles have been recorded as naturalized in Europe. Acacia has attained pest proportions in certain habitats and protected sites (notably coastal dunes, river courses, natural parks and biosphere reserves).• The spread of Acacia dealbata seems to be assisted by human interference such as soil disturbance and severe fires. The biological attributes favoring invasion by A. dealbata include tolerance of changing soil conditions, the ability to take advantage of environmental disturbance, phenotypic plasticity, vegetative reproduction, fire tolerance and allelopathic potential.• Different hypotheses explaining invasiveness and transition between invasion steps related to biological attributes as the key factor for A. dealbata invasion are discussed. Effects on the biodiversity of native flora are little understood and studies of suppression of autochthonous species are needed. It is desirable that further studies comparing Acacia at field sites in their native and exotic range should be done.• Understanding the biology of invasive wattles in Europe is the first step to an effective control method. Studies comparing plant invaders at field sites in their native and invaded areas seem to be most appropriate in order to be able to attack the most vulnerable stages.Résumé• Nous passons en revue les connaissances actuelles sur la biologie du genre Acacia et de Acacia dealbata Link, en particulier comme un envahisseur en Europe, en mettant l’accent sur : (i) la biologie du genre Acacia ; (ii) les attributs biologiques qui sont importants pour le caractère envahissant du genre et d’A. dealbata; (iii) les hypothèses possibles pour la réussite de l’invasion et (iv) les méthodes de contrôle.• Plusieurs acacias australiens ont été enregistrés comme naturalisés en Europe. Acacia a atteint la proportion de nuisible dans certains habitats et sites protégés (notamment des dunes côtières, des cours d’eau, des parcs naturels et des réserves de la biosphère).• La propagation de l’Acacia dealbata semble avoir été aidée par l’intervention humaine, telle que la perturbation des sols et de graves incendies. Les attributs biologiques favorisant l’invasion par A. dealbata incluent la tolérance aux changements des conditions du sol, la capacité à tirer profit des perturbations de l’environnement, la plasticité phénotypique, la reproduction végétative, la tolérance au feu, et le potentiel allélopathique.• Différentes hypothèses expliquant le caractère invasif et la transition entre les phases de l’invasion en relation avec les attributs biologiques comme facteur clé pour l’invasion d’A. dealbata sont discutées. Les effets sur la biodiversité de la flore sont mal compris et des études sur la suppression des espèces autochtones sont nécessaires. Il est souhaitable que d’autres études comparant Acacia sur le terrain dans leurs sites et dans des régions exotiques soient faites.• Comprendre la biologie des espèces d’Acacia invasives en Europe est la première étape d’une méthode de contrôle efficace. Les études comparant les envahisseurs végétaux sur le terrain dans leurs sites et dans les zones envahies semblent être plus appropriées afin d’être en mesure d’attaquer les étapes les plus vulnérables.

[1]  M. T. Ferreira,et al.  EXOTIC AND NATIVE VEGETATION ESTABLISHMENT FOLLOWING CHANNELIZATION OF A WESTERN IBERIAN RIVER , 2001 .

[2]  H. Lamprey Notes on the dispersal and germination of some tree seeds through the agency of mammals and birds , 1967 .

[3]  P. Reich,et al.  Strategy shifts in leaf physiology, structure and nutrient content between species of high‐ and low‐rainfall and high‐ and low‐nutrient habitats , 2001 .

[4]  A. S. Raghubanshi,et al.  Lantana invasion: An overview , 2005 .

[5]  Joel R. Brown,et al.  Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland , 1998, Landscape Ecology.

[6]  A. Gray The pertinacity and predominance of weeds , 1879, American Journal of Science and Arts.

[7]  B. Maslin,et al.  (1584) Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type , 2003 .

[8]  M. Adams,et al.  Nitrogen mineralization and nitrate reduction in forests , 1982 .

[9]  O. O. Osunkoya,et al.  Leaf properties and construction costs of common, co-occurring plant species of disturbed heath forest in Borneo , 2004 .

[10]  D. Blakesley,et al.  Natural and induced polyploidy in Acacia dealbata Link. and Acacia mangium Willd. , 2002, Annals of botany.

[11]  H. Freitas,et al.  Exotic flora of Continental Portugal- A reassesment , 2006 .

[12]  A. Nicotra,et al.  Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species , 2005 .

[13]  R. Callaway,et al.  Novel Weapons: Invasive Success and the Evolution of Increased Competitive Ability , 2004 .

[14]  X. Espadaler,et al.  Myrmecochorous dispersal distances: a world survey , 1998 .

[15]  H. Freitas,et al.  Exotic naturalized flora of continental Portugal – A reassessment , 2006 .

[16]  W. M. Lonsdale,et al.  GLOBAL PATTERNS OF PLANT INVASIONS AND THE CONCEPT OF INVASIBILITY , 1999 .

[17]  R. Major,et al.  Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos , 2001 .

[18]  D. Davidson,et al.  Dispersal Adaptations of Some Acacia Species in the Australian Arid Zone , 1984 .

[19]  K. Whitney Dispersal for distance? Acacia ligulata seeds and meat ants Iridomyrmex viridiaeneus , 2002 .

[20]  M. Robertson,et al.  Invasion of grasslands by silver wattle, Acacia dealbata (Mimosaceae), alters beetle (Coleoptera) assemblage structure , 2007 .

[21]  H. Lamprey,et al.  Interactions between Acacia, bruchid seed beetles and large herbivores* , 1974 .

[22]  Inderjit,et al.  Can plant biochemistry contribute to understanding of invasion ecology? , 2006, Trends in plant science.

[23]  K. Tybirk Pollination, breeding system and seed abortion in some African acacias , 1993 .

[24]  F. Hadacek Secondary Metabolites as Plant Traits: Current Assessment and Future Perspectives , 2002 .

[25]  H. MacIsaac,et al.  Propagule pressure: a null model for biological invasions , 2006, Biological Invasions.

[26]  C. Chou,et al.  Allelopathic Potential of Acacia confusa and Related Species in Taiwan , 1998, Journal of Chemical Ecology.

[27]  S. Ohmori,et al.  4-hydroxypipecolic and and pipecolic acid in Acacia species : their determination by high-performance liquid chromatography, its application to leguminous plants, and configuration of 4-hydroxypipecolic acid , 1996 .

[28]  E. Aschehoug,et al.  Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. , 2000, Science.

[29]  M. J. Reigosa,et al.  Allelopathic Effects of Tree Species on Some Soil Microbial Populations and Herbaceous Plants , 2001, Biologia Plantarum.

[30]  A. Schumann,et al.  Suppression of seed germination and early seedling growth by plantation harvest residues. , 1995 .

[31]  B. Blossey,et al.  Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants: A Hypothesis , 1995 .

[32]  D. Seigler Economic potential from Western Australian Acacia species: secondary plant products , 2002 .

[33]  C. Craig Aerial web-weaving spiders: Linking molecular and organismal processes in evolution. , 1992, Trends in ecology & evolution.

[34]  S. Sparg,et al.  Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a smoke-derived compound , 2007 .

[35]  M. Westoby,et al.  Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts , 1996 .

[36]  C. Freire,et al.  Identification of Δ7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia speciesphytosterols and phytosteryl glucosides in the wood and bark of several Acacia species , 2005, Lipids.

[37]  Michelle R. Leishman,et al.  Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores , 2004 .

[38]  M. J. Reigosa,et al.  Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition , 1995 .

[39]  Steve W. Adkins,et al.  Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia , 2003 .

[40]  C. Horvitz,et al.  ANT DISPERSAL OF CALATHEA (MARANTACEAE) SEEDS BY CARNIVOROUS PONERINES (FORMICIDAE) IN A TROPICAL RAIN FOREST , 1980 .

[41]  P. Attiwill,et al.  Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. , 2003 .

[42]  M. J. Reigosa,et al.  Effect of phenolic compounds on the germination of six weeds species , 1999, Plant Growth Regulation.

[43]  M. Tigabu,et al.  Effects of gut treatment on recovery and germinability of bovine and ovine ingested seeds of four woody species from the Sudanian savanna in West Africa , 2004 .

[44]  M. Sedgley,et al.  Pollen Storage and Breeding System in Relation to Controlled Pollination of Four Species of Acacia (Leguminosae: Mimosoideae) , 1993 .

[45]  D. Seigler,et al.  Overview of the generic status of Acacia (Leguminosae: Mimosoideae) , 2003 .

[46]  D. Donnelly,et al.  Biological control of Acacia longifolia and related weed species (Fabaceae) in South Africa , 1991 .

[47]  Graham N. Stone,et al.  Pollination ecology of acacias (Fabaceae, Mimosoideae) , 2003 .

[48]  F. Reversat The leaching of eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in Congolese tree plantations , 1999 .

[49]  C. Beadle,et al.  Effects of naturally regenerated Acacia dealbata on the productivity of a Eucalyptus nitens plantation in Tasmania, Australia , 1999 .

[50]  A. Carballeira,et al.  Effects of natural leachates of Acacia dealbata Link in Galicia (NW Spain) , 1999 .

[51]  E. Chuvieco,et al.  Human-caused wildfire risk rating for prevention planning in Spain. , 2009, Journal of environmental management.

[52]  D. Seigler Phytochemistry of Acacia—sensu lato , 2003 .

[53]  P. Alpert,et al.  Perspectives in Plant Ecology, Evolution and Systematics Invasiveness, Invasibility and the Role of Environmental Stress in the Spread of Non-native Plants , 2022 .

[54]  P. Spooner Response of Acacia species to disturbance by roadworks in roadside environments in southern New South Wales, Australia , 2005 .

[55]  J. VanDerWal,et al.  Invasiveness in exotic plants: immigration and naturalization in an ecological continuum , 2006 .

[56]  Peter Chesson,et al.  How the Spatial Scales of Dispersal, Competition, and Environmental Heterogeneity Interact to Affect Coexistence , 2004, The American Naturalist.

[57]  A. Nicotra,et al.  Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus , 2004 .

[58]  C. Freire,et al.  Demonstration of long-chain n-alkyl caffeates and delta7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry. , 2007, Phytochemical analysis : PCA.

[59]  Mark A. Davis,et al.  Fluctuating resources in plant communities: a general theory of invasibility , 2000 .

[60]  O. O. Osunkoya,et al.  Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Melastoma beccarianum , 2005, Ecological Research.

[61]  Neal J. Enright,et al.  Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia , 2003 .

[62]  J. Hickey A Floristic Comparison of Vascular Species in Tasmanian Oldgrowth Mixed Forest With Regeneration Resulting From Logging and Wildfire , 1994 .

[63]  Hans Lambers,et al.  Plant Physiological Ecology , 1998, Springer New York.

[64]  Daniel F. Austin,et al.  Exotic Plants and Their Effects in Southeastern Florida , 1978, Environmental Conservation.

[65]  C. Lortie,et al.  Rethinking plant community theory , 2004 .

[66]  W. Bond,et al.  A synthesis of the demography of African acacias , 2001, Journal of Tropical Ecology.

[67]  A. Sarr,et al.  Impact of bush fire on germination of some West African acacias , 2003 .

[68]  C. Wilcock,et al.  Pollination failure in plants: why it happens and when it matters. , 2002, Trends in plant science.

[69]  Charles C. Elton,et al.  The Ecology of Invasions by Animals and Plants. , 1959 .

[70]  K. Linsenmair,et al.  Reduced chemical defence in ant‐plants? A critical re‐evaluation of a widely accepted hypothesis , 2002 .

[71]  J. Bruno,et al.  Inclusion of facilitation into ecological theory , 2003 .

[72]  E. Marchante,et al.  Recovery Potential of Dune Ecosystems Invaded by an Exotic Acacia Species (Acacia longifolia)1 , 2004 .

[73]  J. Dudley Seed dispersal of Acacia erioloba by African bush elephants in Hwange National Park, Zimbabwe , 1999 .

[74]  A. Young,et al.  Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in southeast Australia , 2006 .

[75]  A. S. Raghubanshi,et al.  Plant invasions : Emerging trends and future implications , 2005 .

[76]  J. Maron,et al.  A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range , 2005 .

[77]  M. Crawley,et al.  Exotic plant invasions and the enemy release hypothesis , 2002 .

[78]  M. Prasad,et al.  Tannins and related polyphenols from ten common Acacia species of India , 1991 .

[79]  S. Sultan Phenotypic plasticity and plant adaptation , 1995 .

[80]  J. Roden,et al.  Applications of Chlorophyll Fluorescence to Forest Ecology , 1995 .

[81]  G. Eilu,et al.  Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda , 2005 .

[82]  D. Richardson,et al.  Inferring Process from Pattern in Plant Invasions: A Semimechanistic Model Incorporating Propagule Pressure and Environmental Factors , 2003, The American Naturalist.

[83]  Petr Pyšek,et al.  European map of alien plant invasions based on the quantitative assessment across habitats , 2009 .

[84]  A. Sheppard,et al.  Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. , 2006 .

[85]  M. Uddin,et al.  Allelopathic Effect of Different Concentration of Water Extracts of Acacia auriculiformis Leaf on Some Initial Growth Parameters of Five Common Agricultural Crops , 2003 .

[86]  Charles C. Elton The Ecology of Invasions by Animals and Plants , 1959, Biodiversity & Conservation.

[87]  E. Bucher,et al.  Passage time, viability, and germination of seeds ingested by foxes , 2006 .

[88]  J. Kenrick Review of pollen–pistil interactions and their relevance to the reproductive biology of Acacia , 2003 .

[89]  S. Pennings,et al.  PHENOTYPIC PLASTICITY AND INTERACTIONS AMONG PLANTS , 2003 .

[90]  D. Richardson,et al.  Herbivores, but not other insects, are scarce on alien plants , 2008 .

[91]  J. Dukes,et al.  Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. , 2007, The New phytologist.

[92]  Artur M. S. Silva,et al.  Triterpenes from Acacia Dealbata , 1996 .

[93]  F. Imperato A chalcone glycoside from Acacia dealbata , 1982 .

[94]  D. Ward,et al.  Three–way interactions between Acacia, large mammalian herbivores and bruchid beetles - a review , 2003 .

[95]  J. Hoffmann,et al.  Biological control of invasive golden wattle trees (Acacia pycnantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae), in South Africa , 2002 .

[96]  D. Simberloff,et al.  BIOTIC INVASIONS: CAUSES, EPIDEMIOLOGY, GLOBAL CONSEQUENCES, AND CONTROL , 2000 .

[97]  Christopher F. L. Saarnak,et al.  Australian wattle species in the Drakensberg region of South Africa - An invasive alien or a natural resource? , 2005 .