Direct comparison between experiments and dislocation dynamics simulations of high rate deformation of single crystal copper

[1]  N. Bertin,et al.  Slip-free multiplication and complexity of dislocation networks in FCC metals , 2021, Materials Theory.

[2]  W. Kuykendall,et al.  Stress effects on the energy barrier and mechanisms of cross-slip in FCC nickel , 2020 .

[3]  N. Bertin,et al.  Frontiers in the Simulation of Dislocations , 2020 .

[4]  Alexander L. Shluger,et al.  Roadmap on multiscale materials modeling , 2020, Modelling and Simulation in Materials Science and Engineering.

[5]  Qingyuan Wang,et al.  Strain rate dependency of dislocation plasticity , 2020, Nature Communications.

[6]  A. Arsenlis,et al.  GPU-accelerated dislocation dynamics using subcycling time-integration , 2019, Modelling and Simulation in Materials Science and Engineering.

[7]  A. Mishra,et al.  Revisiting dislocation reactions and their role in uniaxial deformation of copper single crystal micro-pillars , 2019, Modelling and Simulation in Materials Science and Engineering.

[8]  D. Dimiduk,et al.  Large-scale dislocation dynamics simulations of strain hardening of Ni microcrystals under tensile loading , 2019, Acta Materialia.

[9]  S. Nikolov,et al.  DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale , 2018, Computational Materials Science.

[10]  N. Bertin,et al.  Dislocation Networks and the Microstructural Origin of Strain Hardening. , 2017, Physical review letters.

[11]  Yaxin Zhu,et al.  Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling , 2017 .

[12]  Ryan B. Sills,et al.  Advanced time integration algorithms for dislocation dynamics simulations of work hardening , 2016 .

[13]  Jaafar A. El-Awady,et al.  Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals , 2015 .

[14]  S. Chaturvedi,et al.  Integrated experimental and computational studies of deformation of single crystal copper at high strain rates , 2014 .

[15]  S. Groh,et al.  Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron , 2014 .

[16]  B. Schuster,et al.  Normal and Transverse Displacement Interferometers Applied to Small Diameter Kolsky Bars , 2012 .

[17]  D. Dimiduk,et al.  Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method , 2011 .

[18]  S. Fitzgerald Frank–Read sources and the yield of anisotropic cubic crystals , 2010 .

[19]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[20]  Zhiqiang Wang,et al.  A parallel algorithm for 3D dislocation dynamics , 2006, J. Comput. Phys..

[21]  F. Roters,et al.  Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations , 2006 .

[22]  H.-J. Lee,et al.  Dynamic observations and atomistic simulations of dislocation–defect interactions in rapidly quenched copper and gold , 2006 .

[23]  L. Hector,et al.  Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys , 2004, cond-mat/0412324.

[24]  K. T. Ramesh,et al.  A rigorous assessment of the benefits of miniaturization in the Kolsky bar system , 2004 .

[25]  N. Ghoniem,et al.  Parametric dislocation dynamics of anisotropic crystals , 2003 .

[26]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[27]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 1999, Physical review letters.

[28]  Hannes Jónsson,et al.  Atomistic Determination of Cross-Slip Pathway and Energetics , 1997 .

[29]  E. Nembach,et al.  Dynamic dislocation effects in precipitation hardened materials , 1993 .

[30]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[31]  J. W. Edington The influence of strain rate on the mechanical properties and dislocation substructure in deformed copper single crystals , 1969 .

[32]  William D. Nix,et al.  A model for steady state creep based on the motion of jogged screw dislocations , 1965 .

[33]  M. Whelan,et al.  Direct Observations of the Arrangement and Motion of Dislocations in Aluminium , 1956 .

[34]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[35]  E. Orowan Zur Kristallplastizität. I , 1934 .

[36]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[37]  S. Aubry,et al.  Line Dislocation Dynamics Simulations with Complex Physics , 2020, Handbook of Materials Modeling.

[38]  K. T. Ramesh,et al.  High Rates and Impact Experiments , 2008 .

[39]  M. Stelly,et al.  Some Results on the Dynamic Deformation of Copper , 1979 .

[40]  T. Takeuchi Work Hardening of Copper Single Crystals with Multiple Glide Orientations , 1975 .

[41]  S. Yoshida,et al.  Deformation of Copper Single Crystals and Polycrystals at High Strain Rates , 1967 .