Metabolic Glycan Imaging by Isonitrile–Tetrazine Click Chemistry
暂无分享,去创建一个
K. Brindle | A. Neves | F. Leeper | H. Stöckmann | Heather Ireland-Zecchini | Yelena A. Wainman | Shaun Stairs
[1] W. Reutter,et al. Zweifarbenmarkierung von Glycanen lebender Zellen durch Kombination von Diels‐Alder‐ und Klick‐Chemie , 2013 .
[2] W. Reutter,et al. Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.
[3] N. Devaraj,et al. Fluorescent Live‐Cell Imaging of Metabolically Incorporated Unnatural Cyclopropene‐Mannosamine Derivatives , 2013, Chembiochem : a European journal of chemical biology.
[4] Jennifer A. Prescher,et al. Functionalized cyclopropenes as bioorthogonal chemical reporters. , 2012, Journal of the American Chemical Society.
[5] Fang Liu,et al. Control and design of mutual orthogonality in bioorthogonal cycloadditions. , 2012, Journal of the American Chemical Society.
[6] Qing Lin,et al. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.
[7] N. Devaraj,et al. Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.
[8] B. Vauzeilles,et al. Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. , 2012, Angewandte Chemie.
[9] R. Weissleder,et al. Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.
[10] D. Hamelberg,et al. Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. , 2012, Chemical communications.
[11] K. Brindle,et al. Exploring isonitrile-based click chemistry for ligation with biomolecules. , 2011, Organic & biomolecular chemistry.
[12] G. Charron,et al. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. , 2011, Accounts of chemical research.
[13] K. Brindle,et al. Imaging sialylated tumor cell glycans in vivo , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
[14] K. Brindle,et al. Development and evaluation of new cyclooctynes for cell surface glycan imaging in cancer cells. , 2011, Chemical science.
[15] Jennifer J. Kohler,et al. Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway , 2011, Proceedings of the National Academy of Sciences.
[16] Amy C Yan,et al. Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.
[17] Carolyn R Bertozzi,et al. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.
[18] E. Sletten,et al. Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .
[19] M. Best,et al. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. , 2009, Biochemistry.
[20] R. Weissleder,et al. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.
[21] Joseph M. Fox,et al. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.
[22] C. Bertozzi,et al. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems , 2007 .
[23] Carolyn R. Bertozzi,et al. Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.
[24] Jennifer A. Prescher,et al. Imaging cell surface glycans with bioorthogonal chemical reporters. , 2007, Journal of the American Chemical Society.
[25] Mark B. Jones,et al. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology , 2006, Nature chemical biology.
[26] H. Overkleeft,et al. Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. , 2005, Organic & biomolecular chemistry.
[27] J. Esko,et al. The sweet and sour of cancer: glycans as novel therapeutic targets , 2005, Nature Reviews Cancer.
[28] Jennifer A. Prescher,et al. Chemistry in living systems , 2005, Nature chemical biology.
[29] C. Bertozzi,et al. Glycans in cancer and inflammation — potential for therapeutics and diagnostics , 2005, Nature Reviews Drug Discovery.
[30] Nobuhiro Fusetani,et al. Biofouling and antifouling. , 2004, Natural product reports.
[31] M. Garson,et al. Marine isocyanides and related natural products--structure, biosynthesis and ecology. , 2004, Natural product reports.
[32] Chong Yu,et al. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[33] Carolyn R Bertozzi,et al. A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[34] M. G. Finn,et al. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.
[35] K. Sharpless,et al. Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .
[36] C. Bertozzi,et al. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.
[37] A. Niv,et al. Isonitrile derivatives of polyacrylamide as supports for the immobilization of biomolecules , 1993 .
[38] T. Feizi. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens , 1985, Nature.
[39] K. Offermann,et al. Neuere Methoden der präparativen organischen Chemie IV. Isonitril‐Synthesen , 1965 .