Metabolic Glycan Imaging by Isonitrile–Tetrazine Click Chemistry

Seeing the sugar coating: N-Acetyl-glucosamine and mannosamine derivatives tagged with an isonitrile group are metabolically incorporated into cell-surface glycans and can be detected with a fluorescent tetrazine. This bioorthogonal isonitrile-tetrazine ligation is also orthogonal to the commonly used azide-cyclooctyne ligation, and so will allow simultaneous detection of the incorporation of two different sugars.

[1]  W. Reutter,et al.  Zweifarbenmarkierung von Glycanen lebender Zellen durch Kombination von Diels‐Alder‐ und Klick‐Chemie , 2013 .

[2]  W. Reutter,et al.  Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.

[3]  N. Devaraj,et al.  Fluorescent Live‐Cell Imaging of Metabolically Incorporated Unnatural Cyclopropene‐Mannosamine Derivatives , 2013, Chembiochem : a European journal of chemical biology.

[4]  Jennifer A. Prescher,et al.  Functionalized cyclopropenes as bioorthogonal chemical reporters. , 2012, Journal of the American Chemical Society.

[5]  Fang Liu,et al.  Control and design of mutual orthogonality in bioorthogonal cycloadditions. , 2012, Journal of the American Chemical Society.

[6]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[7]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[8]  B. Vauzeilles,et al.  Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. , 2012, Angewandte Chemie.

[9]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[10]  D. Hamelberg,et al.  Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. , 2012, Chemical communications.

[11]  K. Brindle,et al.  Exploring isonitrile-based click chemistry for ligation with biomolecules. , 2011, Organic & biomolecular chemistry.

[12]  G. Charron,et al.  Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. , 2011, Accounts of chemical research.

[13]  K. Brindle,et al.  Imaging sialylated tumor cell glycans in vivo , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  K. Brindle,et al.  Development and evaluation of new cyclooctynes for cell surface glycan imaging in cancer cells. , 2011, Chemical science.

[15]  Jennifer J. Kohler,et al.  Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway , 2011, Proceedings of the National Academy of Sciences.

[16]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[17]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[18]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[19]  M. Best,et al.  Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. , 2009, Biochemistry.

[20]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[21]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[22]  C. Bertozzi,et al.  Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems , 2007 .

[23]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[24]  Jennifer A. Prescher,et al.  Imaging cell surface glycans with bioorthogonal chemical reporters. , 2007, Journal of the American Chemical Society.

[25]  Mark B. Jones,et al.  Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology , 2006, Nature chemical biology.

[26]  H. Overkleeft,et al.  Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. , 2005, Organic & biomolecular chemistry.

[27]  J. Esko,et al.  The sweet and sour of cancer: glycans as novel therapeutic targets , 2005, Nature Reviews Cancer.

[28]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[29]  C. Bertozzi,et al.  Glycans in cancer and inflammation — potential for therapeutics and diagnostics , 2005, Nature Reviews Drug Discovery.

[30]  Nobuhiro Fusetani,et al.  Biofouling and antifouling. , 2004, Natural product reports.

[31]  M. Garson,et al.  Marine isocyanides and related natural products--structure, biosynthesis and ecology. , 2004, Natural product reports.

[32]  Chong Yu,et al.  A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Carolyn R Bertozzi,et al.  A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[35]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[36]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[37]  A. Niv,et al.  Isonitrile derivatives of polyacrylamide as supports for the immobilization of biomolecules , 1993 .

[38]  T. Feizi Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens , 1985, Nature.

[39]  K. Offermann,et al.  Neuere Methoden der präparativen organischen Chemie IV. Isonitril‐Synthesen , 1965 .