The symmetries of image formation by scattering. I. Theoretical framework.

We perceive the world through images formed by scattering. The ability to interpret scattering data mathematically has opened to our scrutiny the constituents of matter, the building blocks of life, and the remotest corners of the universe. Here, we present an approach to image formation based on the symmetry properties of operations in three-dimensional space. Augmented with graph-theoretic means, this approach can recover the three-dimensional structure of objects from random snapshots of unknown orientation at four orders of magnitude higher complexity than previously demonstrated. This is critical for the burgeoning field of structure recovery by X-ray Free Electron Lasers, as well as the more established electron microscopic techniques, including cryo-electron microscopy of biological systems. In a subsequent paper, we demonstrate the recovery of structure and dynamics from experimental, ultralow-signal random sightings of systems with X-rays, electrons, and photons, with no orientational or timing information.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  A. Zewail,et al.  4D Electron Tomography , 2010, Science.

[3]  D. T. Cromer,et al.  X-ray scattering factors computed from numerical Hartree–Fock wave functions , 1968 .

[4]  N. Chakrabarti,et al.  Viscosity gradient-driven instability of ‘shear mode’ in a strongly coupled plasma , 2010, 1310.7735.

[5]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[6]  A. Ourmazd,et al.  Bayesian algorithms for recovering structure from single-particle diffraction snapshots of unknown orientation: a comparison , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[7]  Marc Saillard,et al.  Retrieval of inhomogeneous targets from experimental frequency diversity data , 2005 .

[8]  Ronald R. Coifman,et al.  Graph Laplacian Tomography From Unknown Random Projections , 2008, IEEE Transactions on Image Processing.

[9]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[10]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[11]  W. D. b. Ross Plato's Theory of Ideas , 1952 .

[12]  Hongbin Zha,et al.  Riemannian Manifold Learning for Nonlinear Dimensionality Reduction , 2006, ECCV.

[13]  Huai-Dong Cao,et al.  A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .

[14]  B. Hu,et al.  Scalar waves in the mixmaster universe. I. The Helmholtz equation in a fixed background , 1973 .

[15]  Anne Sentenac,et al.  Digital Optical Microscopy : Introduction à la session spéciale. , 2010 .

[16]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[17]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[18]  S. Lang Introduction to Differentiable Manifolds , 1964 .

[19]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[20]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[21]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[22]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[23]  Andrew L. Ferguson,et al.  Systematic determination of order parameters for chain dynamics using diffusion maps , 2010, Proceedings of the National Academy of Sciences.

[24]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[25]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[26]  A. Authier,et al.  Diffraction Physics , 1998 .

[27]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[28]  Pierre Sabouroux,et al.  Continuing with the Fresnel database: experimental setup and improvements in 3D scattering measurements , 2009 .

[29]  Abbas Ourmazd,et al.  Crystallography without crystals I: The common-line method for assembling a 3D diffraction volume from single-particle scattering , 2008 .

[30]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[31]  J. M. Stewart,et al.  Geometrical Methods of Mathematical Physics. By B. F. SCHUTZ. Cambridge University Press, 1980. 250 pp. £20 (hardback), £7.95 (paperback). , 1982, Journal of Fluid Mechanics.

[32]  A. Ourmazd,et al.  Structure of isolated biomolecules obtained from ultrashort x-ray pulses: exploiting the symmetry of random orientations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  A. Taub Empty Space-Times Admitting a Three Parameter Group of Motions , 1951 .

[34]  E. Davies,et al.  Spectral Properties of Compact Manifolds and Changes of Metric , 1990 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  G. Phillips,et al.  Mapping the conformations of biological assemblies , 2009, 0909.5404.

[37]  S. Lang Fundamentals of differential geometry , 1998 .

[38]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[40]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[41]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[42]  G. Herman,et al.  Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization , 2007, Nature Methods.

[43]  Hugues Giovannini,et al.  Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime , 2010 .

[44]  A. Ourmazd,et al.  The Symmetries of Image Formation by Scattering , 2010 .

[45]  D. Mumford,et al.  A Metric on Shape Space with Explicit Geodesics , 2007, 0706.4299.

[46]  Yoel Shkolnisky,et al.  Detecting consistent common lines in cryo-EM by voting. , 2010, Journal of structural biology.

[47]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[48]  M. Levitt,et al.  Mechanism of Folding Chamber Closure in a Group II Chaperonin , 2010, Nature.

[49]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[50]  Veit Elser,et al.  Reconstruction algorithm for single-particle diffraction imaging experiments. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  A. Ourmazd,et al.  Structure from Fleeting Illumination of Faint Spinning Objects in Flight with Application to Single Molecules , 2008, 0806.2341.

[52]  Andreas Arvanitoyeorgos,et al.  An Introduction to Lie Groups and the Geometry of Homogeneous Spaces , 2003 .

[53]  N. Loh,et al.  Reconstruction algorithm for single-particle diffraction imaging experiments. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  G. Oszlányi,et al.  Ab initio structure solution by charge flipping. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[55]  J. Frank Single-particle imaging of macromolecules by cryo-electron microscopy. , 2002, Annual review of biophysics and biomolecular structure.

[56]  A. Ourmazd,et al.  Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[57]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[58]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[59]  Marina V. Rodnina,et al.  Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy , 2010, Nature.

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[61]  J. McCauley Classical Mechanics: Transformations, Flows, Integrable and Chaotic Dynamics , 1997 .

[62]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[63]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[64]  Andrew G. Glen,et al.  APPL , 2001 .

[65]  Yoel Shkolnisky,et al.  Reference Free Structure Determination through Eigenvectors of Center of Mass Operators. , 2010, Applied and computational harmonic analysis.

[66]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[68]  E.A.B. da Silva,et al.  Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding , 2001 .

[69]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.