Application of remote sensing and GIS in mineral resource mapping - An overview

Remote sensing, as a direct adjunct to field, lithologic and structural mapping, and more recently, GIS have played an important role in the study of mineralized areas. A review on the application of remote sensing in mineral resource mapping is attempted here. It involves understanding the application of remote sensing in lithologic, structural and alteration mapping. Remote sensing becomes an important tool for locating mineral deposits, in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithologic mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. In addition to these, understanding the use of hyperspectral remote sensing is crucial as hyperspectral data can help identify and thematically map regions of exploration interest by using the distinct absorption features of most minerals. Finally coming to the exploration stage, GIS forms the perfect tool in integrating and analyzing various georeferenced geoscience data in selecting the best sites of mineral deposits or rather good candidates for further exploration.

[1]  P. M. van Dijk,et al.  Spectral characterization of ophiolite lithologies in the Troodos Ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits , 1997 .

[2]  Glen Newton,et al.  Characterization and extraction of linear features from digital images , 1994 .

[3]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .

[4]  Jeff R. Harris,et al.  IHS transform for the integration of radar imagery with other remotely sensed data , 1990 .

[5]  G. Hunt Near-infrared (1.3-2.4 mu m) spectra of alteration minerals; potential for use in remote sensing , 1979 .

[6]  D. Evans,et al.  Analysis of coregistered Landsat, Seasat and SIR‐A images of varied terrain types , 1983 .

[7]  D. Spatz Remote sensing characteristics of the sediment- and volcanic-hosted precious metal systems : Imagery selection for exploration and development , 1997 .

[8]  Susan Jenks Gaffey Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology , 1984 .

[9]  D. Rothery Improved discrimination of rock units using Landsat Thematic Mapper imagery of the Oman ophiolite , 1987, Journal of the Geological Society.

[10]  T. Webster,et al.  RADARSAT‐1 Imagery and GIS Modeling for Mineral Exploration in Nova Scotia, Canada , 2001 .

[11]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[12]  Venkatesh Raghavan,et al.  Automatic lineament extraction from digital images using a segment tracing and rotation transformation approach , 1995 .

[13]  R. J. P. Lyon,et al.  Infrared sensing from spacecraft - A geological interpretation. , 1967 .

[14]  R. S. Chatterjee,et al.  Fusion of surface relief data with high spectral and spatial resolution satellite remote sensor data for deciphering geological information in a mature topographic terrain , 2003 .

[15]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[16]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[17]  D. B. Segal,et al.  Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area , 1983 .

[18]  F. D. van der Meer,et al.  Geophysical inversion of imaging spectrometer data for geologic modelling , 2000 .

[19]  B. Rivard,et al.  Structural Reconnaissance of a Deep Crustal Orogen Using RADARSAT and Landsat Satellite Imagery and Airborne Geophysics , 1999 .

[20]  J. Lévesque,et al.  Use of Radar Images in the Identification of Major Regional Structures in the Grenville Province, Western Quebec , 1999 .

[21]  S. Fraser Discrimination and identification of ferric oxides using satellite Thematic Mapper data: A Newman case study , 1991 .

[22]  K. Koike,et al.  Lineament analysis of satellite images using a segment tracing algorithm (STA) , 1995 .

[23]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[24]  D. O'leary,et al.  Lineament, linear, lineation: Some proposed new standards for old terms , 1976 .

[25]  J. Guilbert,et al.  The geology of ore deposits , 1985 .

[26]  J. Taranik,et al.  Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California , 1994 .

[27]  Brian M. Smith,et al.  K-metasomatism and detachment-related mineralization, Harcuvar Mountains, Arizona , 1988 .

[28]  Hermann Kaufmann,et al.  Exploration for gold using panchromatic stereoscopic intelligence satellite photographs and Landsat TM data in the Hebei area, China , 2003 .

[29]  John Starkey,et al.  PhotoLin: a program to identify and analyze linear structures in aerial photographs, satellite images and maps , 2001 .

[30]  Joaquin Melia,et al.  Weathering process effects on spectral reflectance of rocks in a semi-arid environment , 1997 .

[31]  F. Kruse,et al.  Use of Thematic Mapper Imagery to Identify Mineralization in the Santa Teresa District, Sonora, Mexico , 1993 .

[32]  S. Drury Image interpretation in geology , 1987 .

[33]  H. Wetzel,et al.  Potential of the International Space Station for imaging Earth: Lessons from MOMS-2P aboard Mir , 2002 .

[34]  J. Kutina,et al.  Hydrothermal Ore Deposits in the Western United States: A NewConcept of Structural Control of Distribution , 1969, Science.

[35]  A F Goetz,et al.  Mineral Identification from Orbit: Initial Results from the Shuttle Multispectral Infrared Radiometer , 1982, Science.

[36]  Michael Abrams,et al.  Remote sensing for porphyry copper deposits in southern Arizona , 1983 .

[37]  J. Harris,et al.  Mapping of Regional Structure of Eastern Nova Scotia Using Remotely Sensed Imagery: Implications for Regional Tectonics and Gold Exploration , 1991 .

[38]  M. H. Tangestani,et al.  Comparison of Three Principal Component Analysis Techniques to Porphyry Copper Alteration Mapping: A Case Study, Meiduk Area, Kerman, Iran , 2001 .

[39]  P. A. Brennan,et al.  Quantitative Structural Analysis with Stereoscopic Remote Sensing Imagery , 2000 .

[40]  James V. Taranik,et al.  Analysis of the northern Sierra accreted terrane, California, with airborne thermal infrared multispectral scanner data , 1988 .

[41]  A. Green,et al.  A software defoliant for geological analysis of band ratios , 1987 .

[42]  Benoit Rivard,et al.  Reconnaissance Geologie Mapping in the Tapajós Mineral Province, Brazilian Amazon, Using Spaceborne SAR Imagery and Airborne Geophysics , 2001 .

[43]  Ronald G. Resmini,et al.  Mineral mapping with HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A. , 1997 .

[44]  J. Richards,et al.  Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence , 2002 .

[45]  C. Robert-Charrue,et al.  Folding and inversion tectonics in the Anti‐Atlas of Morocco , 2004 .

[46]  Simon J. Hook,et al.  Simulated Aster data for geologic studies , 1995, IEEE Trans. Geosci. Remote. Sens..

[47]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[48]  Yasushi Yamaguchi,et al.  Geologic Remote Sensing in the Thermal Infrared , 1996 .

[49]  M. H. Tangestani,et al.  Porphyry copper alteration mapping at the Meiduk area, Iran , 2002 .

[50]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[51]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[52]  M. E. Mostafa,et al.  Technical note A new optimizing technique for preparing lineament density maps , 1999 .

[53]  W. Farrand Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .

[54]  A. F. H. Goetz,et al.  Effect of vegetation on rock and soil type discrimination , 1977 .

[55]  J. Krishnamurthy The evaluation of digitally enhanced Indian Remote Sensing Satellite (IRS) data for lithological and structural mapping , 1997 .

[56]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[57]  Robert A. Neville,et al.  Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS , 2003 .

[58]  A. Fraser,et al.  A satellite remote sensing technique for geological structure horizon mapping , 1997 .

[59]  R. M. Prol-Ledesma,et al.  Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico , 1998 .

[60]  W. P. Loughlin,et al.  PRINCIPAL COMPONENT ANALYSIS FOR ALTERATION MAPPING , 1991 .

[61]  Tom Farr,et al.  Multipolarization Radar Images for Geologic Mapping and Vegetation Discrimination , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[62]  浦辺 徹郎 "Hydrothermal Mineral Deposits":Principles and Fundamental Concepts for the Exploration Geologists Franco Pirajno 著 , 1996 .

[63]  C. Oppenheimer,et al.  Eruptive history of Dubbi volcano, northeast Afar (Eritrea), revealed by optical and SAR image interpretation , 2000 .

[64]  W. Farrand Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, U.S.A., and the surrounding San Juan Mountains , 1997 .

[65]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[66]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[67]  T. Warner,et al.  Data classification, visualization, and enhancement using n-dimensional probability density functions (nPDF). AVIRIS, TIMS, TM, and geophysical applications , 1993 .

[68]  Ronald G. Blom,et al.  Radar Image Processing for Rock-Type Discrimination , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[69]  D. Rothery,et al.  Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images , 1988 .

[70]  D. Groves,et al.  The Archean Chalice gold deposit: a record of complex, multistage, high-temperature hydrothermal activity and gold mineralisation associated with granitic rocks in the Yilgarn Craton, Western Australia , 2002 .

[71]  Timothy E. Townsend,et al.  Discrimination of iron alteration minerals in visible and near‐infrared reflectance data , 1987 .

[72]  D. Greenbaum,et al.  Alteration detection using TM imagery. The effects of supergene weathering in an arid climate , 1989 .

[73]  C. Elvidge,et al.  An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data , 1991 .

[74]  Yang Hong,et al.  A back - propagation neural network for mineralogical mapping from AVIRIS data , 1997 .

[75]  Dr Robert Bryant,et al.  The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset , 2002 .

[76]  J. Salisbury,et al.  Remote Sensing of Rock Type in the Visible and Near-Infrared, , 1975 .

[77]  Kinya Okada,et al.  Hyper-multispectral image analysis based on waveform characteristics of spectral curve , 1992 .

[78]  M. Favalli,et al.  Surface hydrothermal alteration mapping at Vulcano Island using MIVIS data , 2001 .

[79]  Mapping sedimentary and volcanic units within and surrounding Petrified Forest National Park, Arizona, using Landsat-5 and SPOT panchromatic data , 2001 .

[80]  Roger N. Clark,et al.  The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns , 1993 .

[81]  I. Longhi,et al.  Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5 μ m interval: A tool for hyperspectral data interpretation , 2001 .

[82]  R. Blom,et al.  A remote sensing approach to alteration mapping: AVIRIS data and extension-related potassium metasomatism, Socorro, New Mexico , 1997 .

[83]  Bihong Fu,et al.  Application of stereoscopic satellite images for studying Quaternary tectonics in arid regions , 2004 .

[84]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[85]  W. Bakker,et al.  Cross correlogram spectral matching : application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada , 1997 .

[86]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[87]  William F. Buckingham,et al.  Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering; application to remote sensing , 1983 .

[88]  M. A. D. Sousa,et al.  Regional Structural Analysis by Remote Sensing for Mineral Exploration, Paraiba State, Northeast Brazil , 2000 .

[89]  P. Lawrence,et al.  Application of reflectance spectrometry to mineral exploration using portable radiometers , 1983 .

[90]  S. Gaffey,et al.  Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 µm): Applications in carbonate petrology , 1985 .

[91]  E. Carranza,et al.  Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane , 2002 .

[92]  J. K. Crowley,et al.  Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images , 1989 .

[93]  F. Paganelli,et al.  Use of RADARSAT-1 principal component imagery for structural mapping: a case study in the Buffalo Head Hills area, northern central Alberta, Canada , 2003 .

[94]  Jeff R. Harris,et al.  Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield , 1988 .