Use of starter cultures in fermentation on a household scale

[1]  M. Jakobsen,et al.  The role of Bacillus species in the fermentation of cassava , 1995 .

[2]  M. Nout,et al.  Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava , 1995 .

[3]  C. Franz,et al.  Bacteriocin production by Enterococcus faecium NA01 from ‘wara’—a fermented skimmed cow milk product from West Africa , 1994, Letters in applied microbiology.

[4]  L. Jespersen,et al.  Significance of yeasts and moulds occurring in maize dough fermentation for 'kenkey' production. , 1994, International journal of food microbiology.

[5]  P. Hollman,et al.  Investigation of the presence of biogenic amines and ethyl carbamate in kenkey made with maize and maize-cowpea mixtures as influenced by process conditions. , 1994, Food additives and contaminants.

[6]  F. Rombouts,et al.  The Effect of Cowpea Supplementation on the Quality of Kenkey, a Traditional Ghanaian Fermented Maize Food , 1994 .

[7]  W. Holzapfel,et al.  Bacteriocin production by Carnobacterium piscicola LV 61. , 1993, International journal of food microbiology.

[8]  G. Vignolo,et al.  Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages. , 1993, The Journal of applied bacteriology.

[9]  H. Buckenhüskes Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities , 1993 .

[10]  F. Vogensen,et al.  Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. , 1993, The Journal of applied bacteriology.

[11]  J. Monfort,et al.  Bacteriocinogenic activity of lactobacilli from fermented sausages. , 1993, The Journal of applied bacteriology.

[12]  R. Cassens,et al.  Characterization of bacteriocins from Enterococcus faecium with activity against Listeria monocytogenes. , 1993, International journal of food microbiology.

[13]  J. Piard,et al.  Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation , 1993, Applied and environmental microbiology.

[14]  I. Suwandhi,et al.  Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR 52. , 1993, The Journal of applied bacteriology.

[15]  B. Dérijard,et al.  Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. , 1992, Journal of general microbiology.

[16]  U. Svanberg,et al.  Inhibited growth of common enteropathogenic bacteria in lactic-fermented cereal gruels , 1992, World journal of microbiology & biotechnology.

[17]  S. Mbugua,et al.  Effect of fermentation, malted flour treatment and drum drying on nutritional quality of uji , 1992 .

[18]  S. Mbugua,et al.  The antimicrobial activity of fermented uji , 1992 .

[19]  W. Hammes,et al.  Characterization of the Bacteriocins Curvacin A from Lactobacillus curvatus LTH1174 and Sakacin P from L. sake LTH673 , 1992 .

[20]  W. Holzapfel,et al.  Characterization and partial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. , 1992, International journal of food microbiology.

[21]  T. Montville,et al.  Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures , 1991, Applied and environmental microbiology.

[22]  C. Lacroix,et al.  Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides , 1991, Applied and environmental microbiology.

[23]  R. Buchanan,et al.  Characterization of a lactic acid bacterium, Carnobacterium piscicola LK5, with activity against Listeria monocytogenes at refrigeration temperatures , 1991 .

[24]  S. Mohammed,et al.  Isolation and Characterization of Microorganisms Associated with the Traditional Sorghum Fermentation for Production of Sudanese Kisra , 1991, Applied and environmental microbiology.

[25]  T. Montville,et al.  Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat , 1991, Applied and environmental microbiology.

[26]  J. M. Rodríguez,et al.  Antibacterial activity of Lactobacillus sake isolated from dry fermented sausages. , 1991, International journal of food microbiology.

[27]  J. W. Hastings,et al.  Antibiosis of Leuconostoc gelidum isolated from meat. , 1991, The Journal of applied bacteriology.

[28]  C. D. Harding,et al.  Antimicrobial activity of Leuconostoc gelidum against closely related species and Listeria monocytogenes. , 1990, The Journal of applied bacteriology.

[29]  S. Odunfa,et al.  Growth and extracellular enzyme production by strains of Bacillus species isolated from fermenting African locust bean, iru , 1990 .

[30]  M. Stiles,et al.  Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat , 1990, Applied and environmental microbiology.

[31]  L. Erickson,et al.  CARBOHYDRATE UTILIZATION and GROWTH KINETICS IN the PRODUCTION of YOGURT FROM SOYMILK. PART II: EXPERIMENTAL and PARAMETER ESTIMATION RESULTS , 1990 .

[32]  Olusola Bandele O.B. Oyewole,et al.  Characterization and distribution of lactic acid bacteria in cassava fermentation during fufu production , 1990 .

[33]  P. Schmitt,et al.  Phenotypic characterization of Leuconostoc species , 1989 .

[34]  U. Schillinger,et al.  Antibacterial activity of Lactobacillus sake isolated from meat , 1989, Applied and environmental microbiology.

[35]  C. D. Harding,et al.  Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from Chill-Stored Meats , 1989 .

[36]  A. Havelaar,et al.  Effect of accelerated natural lactic fermentation of infant food ingredients on some pathogenic microorganisms. , 1989, International journal of food microbiology.

[37]  P. Markakis,et al.  Effect of Processing on Certain Antinutrients in Cowpeas (Vigna unguiculata) , 1989 .

[38]  N. Khetarpaul,et al.  Effect of Fermentation by Pure Cultures of Yeasts and Lactobacilli on Phytic Acid and Polyphenol Content of Pearl Millet , 1989 .

[39]  R. Black,et al.  Incidence and etiology of infantile diarrhea and major routes of transmission in Huascar, Peru. , 1989, American journal of epidemiology.

[40]  A. Bhunia,et al.  Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. , 1988, The Journal of applied bacteriology.

[41]  Olusola Bandele O.B. Oyewole,et al.  Microbiological studies on cassava fermentation for ‘lafun’ production , 1988 .

[42]  B. Drasar,et al.  Effect of fermentation of Ghanaian maize dough on the survival and proliferation of 4 strains of Shigella flexneri. , 1988, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[43]  Carlos Gonzalez,et al.  Plasmid-Associated Bacteriocin Production and Sucrose Fermentation in Pediococcus acidilactici , 1987, Applied and environmental microbiology.

[44]  B. Hamaker,et al.  Improving the in vitro protein digestibility of sorghum with reducing agents. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Hamaker,et al.  Digestibility and utilization of protein and energy from Nasha, a traditional Sudanese fermented sorghum weaning food. , 1986, The Journal of nutrition.

[46]  Carlos Gonzalez,et al.  Evidence for Plasmid Linkage of Raffinose Utilization and Associated α-Galactosidase and Sucrose Hydrolase Activity in Pediococcus pentosaceus , 1986, Applied and environmental microbiology.

[47]  M. Daeschel,et al.  Association of a 13.6-Megadalton Plasmid in Pediococcus pentosaceus with Bacteriocin Activity , 1985, Applied and environmental microbiology.

[48]  D. Gordon,et al.  Release of Phosphorus from Phytate by Natural Lactic Acid Fermentation , 1983 .

[49]  M. Teuber,et al.  Potential of Lactic Streptococci to Produce Bacteriocin , 1983, Applied and environmental microbiology.

[50]  M. Fields,et al.  Nutritional Improvement of Sorghum by Fermentation , 1981 .

[51]  E. B. Bagley,et al.  PEANUT-FORTIFIED FOOD BLENDS , 1979 .

[52]  K. Steinkraus,et al.  α-Galactosidase Activity of Lactobacilli , 1973 .

[53]  C. W. Hesseltine,et al.  Carbon and nitrogen utilization by Rhizopus oligosporus. , 1966, Mycologia.

[54]  R. Marder,et al.  Workshop on small-scale food processing contributing to food security. , 1996 .

[55]  P. F. Nche Innovations in the production of kenkey, a traditional fermented maize product of Ghana : nutritional, physical and safety aspects , 1995 .

[56]  W. Holzapfel,et al.  Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. , 1995, International journal of food microbiology.

[57]  R. Geisen,et al.  Bakteriozine von Milchsäurebakterien: Eigenschaften, Wirkungsmechanismen und Genetik , 1995 .

[58]  G. Campbell-Platt Fermented foods — a world perspective , 1994 .

[59]  G. Molin,et al.  Starter cultures for the production of ogi, a fermented infant food from maize and sorghum , 1994 .

[60]  W. Lorri Nutritional and Microbiological Evaluation of Fermented Cereal Weaning Foods , 1993 .

[61]  F. Käferstein,et al.  Contaminated weaning food: a major risk factor for diarrhoea and associated malnutrition. , 1993, Bulletin of the World Health Organization.

[62]  U. Svanberg,et al.  Lactic-fermented cereal gruels with improved in vitro protein digestibility , 1993 .

[63]  Y. Henis,et al.  Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. , 1993, The Journal of applied bacteriology.

[64]  A. Atrih,et al.  Detection of bacteriocins produced by Lactobacillus plantarum strains isolated from different foods. , 1993, Microbios.

[65]  A. S. Abdel-Gawad Effect of domestic processing on oligosaccharide content of some dry legume seeds , 1993 .

[66]  A. Pitotti,et al.  INHIBITION OF LISTERIA MONOCYTOGENES BY LACTOCOCCUS LACTIS SUBSP. LACTIS ISOLATED FROM ITALIAN RAW HAM , 1992 .

[67]  I. O. Akinyele,et al.  Effect of soaking, dehulling and fermentation on the oligosaccharides and nutrient content of cowpeas (Vigna unguiculata) , 1991 .

[68]  I. O. Akinyele,et al.  The effect of germination on the oligosaccharides, trypsin inhibitors and nutrient content of cowpea milk , 1990 .

[69]  W. P. Hammes,et al.  Bacterial starter cultures in food production , 1990 .

[70]  F. Delorme,et al.  Evidence for a bacteriocin produced by Lactococcus lactis CNRZ 481. , 1990 .

[71]  L. Trugo,et al.  Oligosaccharide composition and trypsin inhibitor activity of P. vulgaris and the effect of germination on the α-galactoside composition and fermentation in the human colon. , 1990 .

[72]  L. Leistner Mould‐fermented foods: Recent developments , 1990 .

[73]  Kadam Ss,et al.  Nutritional improvement of cereals by fermentation , 1989 .

[74]  B. Chauhan,et al.  Phytic acid and extractable phosphorus of pearl millet flour as affected by natural lactic acid fermentation , 1987 .

[75]  Keith H. Steinkraus,et al.  Handbook of indigenous fermented foods , 1983 .

[76]  K. Steinkraus,et al.  UTILIZATION OF OLIGOSACCHARIDES BY LACTIC ACID BACTERIA DURING FERMENTATION OF SOY MILK , 1975 .