A posteriori error analysis for finite element solution of one-dimensional elliptic differential equations using equidistributing meshes
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Ivo Babuška,et al. Analysis of optimal finite-element meshes in ¹ , 1979 .
[3] F. Moukalled,et al. A local adaptive grid procedure for incompressible flows with multigridding and equidistribution concepts , 1991 .
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] J. A. Mackenzie. Uniform Convergence Analysis of an Upwind Finite-Difference Approximation of a Convection-Diffusion , 1996 .
[6] Long Chen,et al. Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..
[7] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[8] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[9] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[10] Tao Tang,et al. Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence , 2000 .
[11] I. Babuska,et al. Analysis of Optimal Finite Element Meshes in R1 , 1979 .
[12] George Beckett,et al. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem , 2000 .
[13] H. G. Burchard,et al. Splines (with optimal knots) are better , 1974 .
[14] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[15] Long Chen,et al. Stability and accuracy of adapted finite element methods for singularly perturbed problems , 2008, Numerische Mathematik.
[16] I. Babuska,et al. The finite element method and its reliability , 2001 .
[17] Victor Pereyra,et al. Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .
[18] Weizhang Huang,et al. Variational mesh adaptation II: error estimates and monitor functions , 2003 .
[19] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[20] J. A. White,et al. On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .
[21] J. Mackenzie,et al. On a uniformly accurate finite difference approximation of a singulary peturbed reaction-diffusion problem using grid equidistribution , 2001 .
[22] Robert D. Russell,et al. Convergence of de Boor's algorithm for the generation of equidistributing meshes , 2011 .
[23] J. Sacks,et al. Designs for Regression Problems with Correlated Errors III , 1966 .
[24] Carl de Boor,et al. Good approximation by splines with variable knots + , 2011 .
[25] D. M. Sloan,et al. Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid , 1999 .
[26] C. D. Boor,et al. Good approximation by splines with variable knots. II , 1974 .
[27] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[28] Natalia Kopteva,et al. A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..
[29] J. Sacks,et al. Designs for Regression Problems With Correlated Errors: Many Parameters , 1968 .
[30] John D. Pryce. On the convergence of iterated remeshing , 1989 .
[31] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[32] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[33] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[34] George Beckett,et al. Uniformly convergent high order finite element solutions of a singularly perturbed reaction-diffusion equation using mesh equidistribution , 2001 .
[35] Weizhang Huang,et al. Variational mesh adaptation: isotropy and equidistribution , 2001 .
[36] Carsten Carstensen,et al. Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..
[37] Marc Beckers,et al. The construction of three-dimensional invariant cubature formulae , 1991 .
[38] Weizhang Huang. Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .
[39] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[40] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[41] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[42] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[43] D. S. Dodson. Optimal-order approximation by polynomial spline functions. , 1972 .
[44] S. SIAMJ.. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .