Conformational Preferences of Modified Uridines: Comparison of AMBER Derived Force Fields

The widespread occurrence of modified residues in RNA sequences necessitates development of accurate parameters for these modifications for reliable modeling of RNA structure and dynamics. A comprehensive set of parameters for the 107 naturally occurring RNA modifications was proposed by Aduri et al. (J. Chem. Theory Comput. 2007, 3, 1464-1475) for the AMBER FF99 force field. In this work, we tested these parameters on a set of modified uridine residues, namely, dihydrouridine, 2-thiouridine, 4-thiouridine, pseudouridine, and uridine-5-oxyacetic acid, by performing molecular dynamics and replica exchange molecular dynamics simulations of these nucleosides. Although our simulations using the FF99 force field did not, in general, reproduce the experimentally observed conformational characteristics well, combination of the parameter set with recent revisions of the FF99 force field for RNA showed noticeable improvement for some of the nucleosides.

[1]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[2]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[3]  Lennart Nilsson,et al.  Molecular dynamics simulation of the preferred conformations of 2-thiouridine in aqueous solution , 2007 .

[4]  J. Šponer,et al.  Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles , 2011, Journal of chemical theory and computation.

[5]  Michal Otyepka,et al.  Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. , 2010, Journal of chemical theory and computation.

[6]  S. Yokoyama,et al.  Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. Nawrot,et al.  Thiolation of uridine carbon-2 restricts the motional dynamics of the transfer RNA wobble position nucleoside , 1992 .

[8]  C. Altona Conformational analysis of nucleic acids. Determination of backbone geometry of single‐helical RNA and DNA in aqueous solution , 2010 .

[9]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[10]  P. Agris Decoding the genome: a modified view. , 2004, Nucleic acids research.

[11]  M. Winkler,et al.  Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). , 2002, Journal of Molecular Biology.

[12]  W. Saenger,et al.  A pyrimidine nucleoside in the syn conformation: molecular and crystal structure of 4-thiouridine-hydrate. , 1970, Journal of molecular biology.

[13]  P. Agris Wobble position modified nucleosides evolved to select transfer RNA codon recognition: a modified-wobble hypothesis. , 1991, Biochimie.

[14]  R Giegé,et al.  A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. , 1999, Biochemistry.

[15]  M. Sekine,et al.  Synthesis of 4-Thiopseudoisocytidine and 4-Thiopseudouridine as Components of Triplex-forming Oligonucleotides , 2009 .

[16]  S. K. Mahto,et al.  Probing the stabilizing effects of modified nucleotides in the bacterial decoding region of 16S ribosomal RNA. , 2013, Bioorganic & medicinal chemistry.

[17]  D. Abraham,et al.  The X-ray crystal and molecular structure of the nucleoside β-uridine , 1971 .

[18]  S. Yokoyama,et al.  1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. , 1979, Nucleic acids research.

[19]  B. Reid,et al.  NMR spectroscopy of the ring nitrogen protons of uracil and substituted uracils; relevance to A psi base pairing in the solution structure of transfer RNA. , 1977, Nucleic acids research.

[20]  John SantaLucia,et al.  AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA. , 2007, Journal of chemical theory and computation.

[21]  M. Manoharan,et al.  Structural characteristics of 2'-O-(2-methoxyethyl)-modified nucleic acids from molecular dynamics simulations. , 1998, Nucleic acids research.

[22]  Paul F Agris,et al.  Bringing order to translation: the contributions of transfer RNA anticodon‐domain modifications , 2008, EMBO reports.

[23]  J. Plavec,et al.  How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides? , 1996 .

[24]  F. Hruska,et al.  Determination of the molecular conformation of uridine in aqueous solution by proton magnetic resonance spectroscopy. Comparison with β-pseudouridine , 1970 .

[25]  G. Nienhaus,et al.  Single-molecule FRET reveals a cooperative effect of two methyl group modifications in the folding of human mitochondrial tRNA(Lys). , 2011, Chemistry & biology.

[26]  G. Nienhaus,et al.  Sculpting an RNA conformational energy landscape by a methyl group modification--a single-molecule FRET study. , 2008, Angewandte Chemie.

[27]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[28]  Paul F Agris,et al.  tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.

[29]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[30]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[31]  Alexander D. MacKerell,et al.  Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. , 2012, Journal of chemical theory and computation.

[32]  Maria C. Nagan,et al.  Molecular dynamics simulations of human tRNAUUULys,3: the role of modified bases in mRNA recognition , 2006, Nucleic acids research.

[33]  T. Carell,et al.  Structure and function of noncanonical nucleobases. , 2012, Angewandte Chemie.

[34]  Angel E García,et al.  High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[35]  M. Rodnina,et al.  The crystal structure of unmodified tRNAPhe from Escherichia coli , 2010, Nucleic acids research.

[36]  R. J. Swan,et al.  Optical rotatory dispersion of nucleic acid derivatives. 8. The conformation of pyrimidine nucleosides in solution. , 1967, Biochemistry.

[37]  E Westhof,et al.  RNA solvation: A molecular dynamics simulation perspective , 2000, Biopolymers.

[38]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[39]  Harry A. Stern,et al.  Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs , 2011, Journal of chemical theory and computation.

[40]  Franck A. P. Vendeix,et al.  Mechanism of expanding the decoding capacity of tRNAs by modification of uridines , 2007, Nature Structural &Molecular Biology.

[41]  E. Phizicky,et al.  Do all modifications benefit all tRNAs? , 2010, FEBS letters.

[42]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. , 1970, Journal of the American Chemical Society.

[43]  Nicolas Foloppe,et al.  Toward a full characterization of nucleic acid components in aqueous solution: simulations of nucleosides. , 2005, The journal of physical chemistry. B.

[44]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[45]  L. Eriksson,et al.  Theoretical study on conformational preferences of ribose in 2-thiouridine--the role of the 2'OH group. , 2010, Physical chemistry chemical physics : PCCP.

[46]  M. Guéron,et al.  Comparative conformations of uridine and pseudouridine and their derivatives. , 1980, European journal of biochemistry.

[47]  Mark Helm,et al.  Post-transcriptional nucleotide modification and alternative folding of RNA , 2006, Nucleic acids research.

[48]  Mathias Sprinzl,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 1993, Nucleic Acids Res..

[49]  J. Alfonzo,et al.  Transfer RNA modifications: nature's combinatorial chemistry playground , 2013, Wiley interdisciplinary reviews. RNA.

[50]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. , 1973, Journal of the American Chemical Society.

[51]  M. W. Gray,et al.  Pseudouridine in RNA: What, Where, How, and Why , 2000, IUBMB life.

[52]  Zaida Luthey-Schulten,et al.  Dynamics of Recognition between tRNA and elongation factor Tu. , 2008, Journal of molecular biology.

[53]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[54]  W. Saenger,et al.  The conformation of 4‐thiouridine‐5′‐phosphate in single and double stranded polynucleotides , 1969, FEBS letters.

[55]  Hirotaka Ode,et al.  Force field parameters for rotation around χ torsion axis in nucleic acids , 2008, J. Comput. Chem..

[56]  S. Steinberg,et al.  Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. , 1995, Biochimie.

[57]  V. de Crécy-Lagard,et al.  Biosynthesis and function of posttranscriptional modifications of transfer RNAs. , 2012, Annual review of genetics.

[58]  S. K. Mahto,et al.  Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. , 2007, ACS chemical biology.

[59]  E Westhof,et al.  Molecular dynamics simulations of solvated yeast tRNA(Asp). , 1999, Biophysical journal.

[60]  Jef Rozenski,et al.  The RNA modification database, RNAMDB: 2011 update , 2010, Nucleic Acids Res..

[61]  F. Hruska,et al.  Molecular Conformation of 4-Thiouridine in Aqueous Solution , 1971 .

[62]  K. Morikawa,et al.  Uridine-5-oxyacetic acid methyl ester monohydrate , 1975 .

[63]  S. J. Nasvall,et al.  The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. , 2004, RNA.

[64]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[65]  P. Andrews,et al.  Crystal structures of (R,R)-{[Ph(Me)CH]2NLi·pmdeta} and {[PhC(CH2)NH]Na·pmdeta}2: alkali metal amides derived from (R,R)-bis(α-methylbenzyl)amine , 2001 .

[66]  J. McCloskey,et al.  Conformational flexibility in RNA: the role of dihydrouridine. , 1996, Nucleic acids research.

[67]  M. Sundaralingam,et al.  Molecular Conformation of Dihydrouridine: Puckered Base Nucleoside of Transfer RNA , 1971, Science.

[68]  P. Agris,et al.  Chemistry and Structure of Modified Uridine Dinucleosides Are Determined by Thiolation , 1992 .

[69]  M. Helm,et al.  tRNA stabilization by modified nucleotides. , 2010, Biochemistry.

[70]  R. Deslauriers,et al.  A proton magnetic resonance study of the molecular conformation of a modified nucleoside from transfer RNA. Dihydrouridine. , 1971, Canadian journal of biochemistry.

[71]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[72]  C. Veltri,et al.  An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. , 1998, Journal of biomolecular structure & dynamics.

[73]  C. Altona,et al.  Conformational analysis of the B and Z forms of the d(m5C-G)3 and d(br5C-G)3 hexamers in solution. A 300-MHz and 500-MHz NMR study. , 1986, European journal of biochemistry.

[74]  Paul F Agris,et al.  Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding. , 2008, Biochemistry.

[75]  D. Suck,et al.  Molecular and crystal structure of 6-methyluridine. A pyrimidine nucleoside in the syn conformation. , 1972, Journal of the American Chemical Society.

[76]  D. Davis Biophysical and Conformational Properties of Modified Nucleosides in RNA (Nuclear Magnetic Resonance Studies) , 1998 .

[77]  D. Turner,et al.  Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised χ Torsions , 2011, The journal of physical chemistry. B.

[78]  Yi Xiao,et al.  RNA Stability Under Different Combinations of Amber Force Fields and Solvation Models , 2010, Journal of biomolecular structure & dynamics.

[79]  Harry A. Stern,et al.  Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine , 2010, Journal of chemical theory and computation.

[80]  Cornelis Altona,et al.  Empirical Correlations Between Conformational Parameters in β‐D‐Furanoside Fragments Derived from a Statistical Survey of Crystal Structures of Nucleic Acid Constituents Full Description of Nucleoside Molecular Geometries in Terms of Four Parameters , 1980 .

[81]  P. Palenchar,et al.  Identification of a gene involved in the generation of 4-thiouridine in tRNA. , 1998, Nucleic acids research.

[82]  P. Agris,et al.  Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). , 2003, Journal of molecular biology.

[83]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .