Scalable read-out schemes for qubits

A read-out scheme inspired by dynamic random access memory could help deliver scalable quantum computers.

[1]  Christian Grewing,et al.  Systems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[2]  M. J. Kelly,et al.  Multiplexed Charge-locking Device for Large Arrays of Quantum Devices , 2014, 1408.2872.

[3]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[4]  Alessandro Rossi,et al.  A CMOS dynamic random access architecture for radio-frequency readout of quantum devices , 2018, Nature Electronics.

[5]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[6]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[7]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[8]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[9]  M. J. Kelly,et al.  Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices , 2013, 1306.4229.

[10]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[11]  S. Barraud,et al.  Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell , 2017, 1708.04159.

[12]  L. Vandersypen,et al.  Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits. , 2018, Physical review letters.