sCharacterisation of calcined waste clays from kaolinite extraction in alkali-activated GGBFS blends

[1]  D. Deneele,et al.  Comprehensive study on the reactivity and mechanical properties of alkali-activated metakaolin at high H2O/Na2O ratios , 2023, Applied Clay Science.

[2]  Huang Li,et al.  Composition design and characterization of alkali-activated Slag–Metakaolin materials , 2022, Frontiers in Built Environment.

[3]  J. Provis,et al.  Mechanisms of dispersion of metakaolin particles via adsorption of sodium naphthalene sulfonate formaldehyde polymer. , 2022, Journal of colloid and interface science.

[4]  Hongbo Li,et al.  Effect of Slag on the Strength and Shrinkage Properties of Metakaolin-Based Geopolymers , 2022, Materials.

[5]  D. Deneele,et al.  29Si and 27Al MAS NMR spectroscopic studies of activated metakaolin-slag mixtures , 2022, Construction and Building Materials.

[6]  Ning Li,et al.  Understanding the Role of Metakaolin towards Mitigating the Shrinkage Behavior of Alkali-Activated Slag , 2021, Materials.

[7]  Xinyuan Ke,et al.  Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements , 2021, The Journal of Physical Chemistry C.

[8]  J. Dai,et al.  Effect of mixing method on the performance of alkali-activated fly ash/slag pastes along with polycarboxylate admixture , 2021 .

[9]  G. Ye,et al.  Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag , 2020, Materials.

[10]  Zuhua Zhang,et al.  Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash , 2020 .

[11]  Y. Kocak Effects of metakaolin on the hydration development of Portland–composite cement , 2020 .

[12]  Y. Pontikes,et al.  Advances in alkali-activation of clay minerals , 2020, Cement and Concrete Research.

[13]  B. Walkley,et al.  Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation , 2020, Composites Part B: Engineering.

[14]  Jianwei Sun,et al.  Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag , 2019, Journal of Thermal Analysis and Calorimetry.

[15]  R. Snellings,et al.  Reactivity of supplementary cementitious materials (SCMs) in cement blends , 2019, Cement and Concrete Research.

[16]  G. Ye,et al.  Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin , 2019, Cement and Concrete Research.

[17]  B. Pacewska,et al.  A study of the early hydration processes and properties of fly ash-slag binders , 2019, Bulletin of Materials Science.

[18]  G. Russo,et al.  Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution , 2019, Construction and Building Materials.

[19]  J. Provis,et al.  Solid-state nuclear magnetic resonance spectroscopy of cements , 2019, Materials Today Advances.

[20]  E. Ghorbel,et al.  Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars , 2019, Construction and Building Materials.

[21]  M. Król,et al.  Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  A. Kashani,et al.  Examination of alkali-activated material nanostructure during thermal treatment , 2018, Journal of Materials Science.

[23]  L. Struble,et al.  Effects of calcium on setting mechanism of metakaolin‐based geopolymer , 2018 .

[24]  Z. Tan,et al.  Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes , 2017, Materials and Structures.

[25]  J. Deventer,et al.  Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content , 2017 .

[26]  Caijun Shi,et al.  Composition design and performance of alkali-activated cements , 2017 .

[27]  Rupert J. Myers,et al.  Phase diagrams for alkali-activated slag binders , 2017 .

[28]  I. Richardson,et al.  Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H , 2017 .

[29]  H. Balmori-Ramírez,et al.  Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars , 2017 .

[30]  Mohammad Ismail,et al.  Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar , 2016, Ain Shams Engineering Journal.

[31]  Ö. Cizer,et al.  Pozzolanic reactivity of pure calcined clays , 2016 .

[32]  J. Deventer,et al.  Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors , 2016 .

[33]  John L. Provis,et al.  Management and valorisation of wastes through use in producing alkali‐activated cement materials , 2016 .

[34]  Karen L. Scrivener,et al.  Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays , 2016 .

[35]  A. Allahverdi,et al.  Influence of calcium aluminate cement on geopolymerization of natural pozzolan , 2016 .

[36]  John L. Provis,et al.  Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator , 2016 .

[37]  L. Heller-Kallai,et al.  Dehydroxylation of muscovite: study of quenched samples , 2015, Physics and Chemistry of Minerals.

[38]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[39]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[40]  Yu-min Chang,et al.  Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers , 2014 .

[41]  Á. Palomo,et al.  Alkali-activated blends of calcium aluminate cement and slag/diatomite , 2013 .

[42]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[43]  M. Riccardi,et al.  Thermal dehydroxylation of kaolinite under isothermal conditions , 2013 .

[44]  J. I. Escalante-García,et al.  Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization , 2013 .

[45]  V. Rose,et al.  High‐Resolution X‐ray Diffraction and Fluorescence Microscopy Characterization of Alkali‐Activated Slag‐Metakaolin Binders , 2013 .

[46]  Jeffrey W. Bullard,et al.  The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates , 2013 .

[47]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[48]  G. Ye,et al.  The pore structure and permeability of alkali activated fly ash , 2013 .

[49]  S. Nannarone,et al.  Sodian muscovite-2M1: Crystal chemistry and surface features , 2013 .

[50]  Y. M. Liew,et al.  Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers , 2012 .

[51]  Christopher R. Cheeseman,et al.  Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers , 2012 .

[52]  Q. Zeng,et al.  Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data , 2012 .

[53]  O. Kayali,et al.  The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag , 2012 .

[54]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[55]  Frank Bullen,et al.  Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin wi , 2012 .

[56]  V. Ferreira,et al.  Effect of metakaolin dispersion on the fresh and hardened state properties of concrete , 2012 .

[57]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[58]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[59]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[60]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[61]  S. Marfil,et al.  Na2O, K2O, SiO2 and Al2O3 release from potassic and calcic–sodic feldspars into alkaline solutions , 2010 .

[62]  L. Wadsö Operational issues in isothermal calorimetry , 2010 .

[63]  J. I. Escalante-García,et al.  Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements , 2010 .

[64]  D. Stephan,et al.  Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends , 2009 .

[65]  A. Escudero,et al.  Application of 29Si and 27Al MAS NMR spectroscopy to the study of the reaction mechanism of kaolinite to illite/muscovite , 2009 .

[66]  M. C. Alonso,et al.  Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash , 2009 .

[67]  M. C. Alonso,et al.  Microstructural Evolution of Calcium Aluminate Cements Hydration with Silica Fume and Fly Ash Additions by Scanning Electron Microscopy, and Mid and Near-Infrared Spectroscopy , 2008 .

[68]  P. Blanchart,et al.  Structural transformations of Muscovite at high temperature by X-ray and neutron diffraction , 2008 .

[69]  Kim S. Finnie,et al.  Influence of curing schedule on the integrity of geopolymers , 2007 .

[70]  C. Kaps,et al.  Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition , 2007 .

[71]  Erick Ringot,et al.  Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength , 2006 .

[72]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[73]  J. Provis,et al.  29Si NMR study of structural ordering in aluminosilicate geopolymer gels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[74]  M. Broekmans,et al.  Structural properties of quartz and their potential role for ASR , 2004 .

[75]  Jeffrey J. Thomas,et al.  Changes in the size of pores during shrinkage (or expansion) of cement paste and concrete , 2003 .

[76]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[77]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .

[78]  Sidney Diamond,et al.  Alkali release from feldspars into pore solutions , 2003 .

[79]  J. Ojima Determining of Crystalline Silica in Respirable Dust Samples by Infrared Spectrophotometry in the Presence of Interferences , 2003, Journal of occupational health.

[80]  J. Deventer,et al.  The effects of inorganic salt contamination on the strength and durability of geopolymers , 2002 .

[81]  H. Panepucci,et al.  29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes , 2001 .

[82]  A. Lavat,et al.  Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT-IR spectroscopy , 2001 .

[83]  M. Blanco-Varela,et al.  Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry , 2000 .

[84]  Changling He,et al.  Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite , 2000 .

[85]  Jay G. Sanjayan,et al.  Early age strength and workability of slag pastes activated by NaOH and Na2CO3 , 1998 .

[86]  Caijun Shi,et al.  A calorimetric study of early hydration of alkali-slag cements , 1995 .

[87]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[88]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[89]  P. McMillan,et al.  Al and Si coordination in SiO21bAl2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations , 1992 .

[90]  T. Uchino,et al.  Interpretation of Hydrated States of Sodium Silicate Glasses by Infrared and Raman Analysis , 1991 .

[91]  R. Kirkpatrick,et al.  High-resolution 23Na, 27Al and 29Si NMR spectroscopy of framework Aluminosilicate glasses , 1987 .

[92]  K. MacKenzie,et al.  The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-AI NMR , 1987 .

[93]  Z. Trávníček,et al.  Isothermal dehydroxylation op muscovite MICA , 1985 .

[94]  D. Brouwer Applications of silicon-29 NMR spectroscopy , 2021, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.

[95]  A. Cucos,et al.  THERMAL CHARACTERIZATION OF KAOLINITIC CLAY , 2021 .

[96]  C. Cai,et al.  Synthesis and Reaction Mechanism of an Alkali-Activated Metakaolin-Slag Composite System at Room Temperature , 2019, Journal of Materials in Civil Engineering.

[97]  Kamal H. Khayat,et al.  Influence of aggregate characteristics on workability of superworkable concrete , 2016 .

[98]  Karen Scrivener,et al.  The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite , 2011 .

[99]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[100]  John L. Provis,et al.  The role of particle technology in developing sustainable construction materials , 2010 .

[101]  John L. Provis,et al.  Activating solution chemistry for geopolymers , 2009 .

[102]  A. Fernández-Jiménez,et al.  FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .

[103]  A. Allahverdi NITRIC ACID ATTACK ON HARDENED PASTE OF GEOPOLYMERIC CEMENTS , 2001 .