Hashtag Recommendation Using Dirichlet Process Mixture Models Incorporating Types of Hashtags

In recent years, the task of recommending hashtags for microblogs has been given increasing attention. Various methods have been proposed to study the problem from different aspects. However, most of the recent studies have not considered the differences in the types or uses of hashtags. In this paper, we introduce a novel nonparametric Bayesian method for this task. Based on the Dirichlet Process Mixture Models (DPMM), we incorporate the type of hashtag as a hidden variable. The results of experiments on the data collected from a real world microblogging service demonstrate that the proposed method outperforms stateof-the-art methods that do not consider these aspects. By taking these aspects into consideration, the relative improvement of the proposed method over the state-of-theart methods is around 12.2% in F1- score.

[1]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[2]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[3]  Claire Cardie,et al.  39. Opinion mining and sentiment analysis , 2014 .

[4]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[5]  David Carmel,et al.  Social media recommendation based on people and tags , 2010, SIGIR.

[6]  Hassan Foroosh,et al.  Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter , 2013, FLAIRS Conference.

[7]  Jane Yung-jen Hsu,et al.  A Content-Based Method to Enhance Tag Recommendation , 2009, IJCAI.

[8]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[9]  Ingmar Weber,et al.  Personalized, interactive tag recommendation for flickr , 2008, RecSys '08.

[10]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[11]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[12]  David Carmel,et al.  Mining expertise and interests from social media , 2013, WWW.

[13]  Prasenjit Majumder,et al.  Query Expansion for Microblog Retrieval , 2011, TREC.

[14]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[15]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[16]  Richi Nayak,et al.  Connecting users and items with weighted tags for personalized item recommendations , 2010, HT '10.

[17]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[18]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[19]  Yi-Cheng Ku,et al.  Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings , 2006, J. Manag. Inf. Syst..

[20]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[21]  Wenyi Huang,et al.  Recommending citations: translating papers into references , 2012, CIKM.

[22]  Miles Efron,et al.  Hashtag retrieval in a microblogging environment , 2010, SIGIR.

[23]  Tiejun Zhao,et al.  Target-dependent Twitter Sentiment Classification , 2011, ACL.

[24]  Zhiyuan Liu,et al.  Topical Word Trigger Model for Keyphrase Extraction , 2012, COLING.

[25]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[26]  Xuanjing Huang,et al.  Learning Topical Translation Model for Microblog Hashtag Suggestion , 2013, IJCAI.

[27]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[28]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[29]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[30]  Hila Becker,et al.  Learning similarity metrics for event identification in social media , 2010, WSDM '10.

[31]  Zhiyuan Liu,et al.  A Simple Word Trigger Method for Social Tag Suggestion , 2011, EMNLP.

[32]  Alan F. Smeaton,et al.  Classifying sentiment in microblogs: is brevity an advantage? , 2010, CIKM.

[33]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[34]  Hiroshi Nakagawa,et al.  Browsing System for Weblog Articles based on Automated Folksonomy , 2006 .

[35]  Takayuki Ito,et al.  Evaluation of the Reputation Network Using Realistic Distance between Facebook Data , 2012, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[36]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Xiaolong Wang,et al.  Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach , 2011, CIKM '11.

[38]  Wesley De Neve,et al.  Using topic models for Twitter hashtag recommendation , 2013, WWW.

[39]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..