The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth

Abstract It is shown that under very general circumstances, the standard optimal growth model with two or more capital goods can give rise to optimal trajectories that are limit cycles. An example with a nonjoint production Cobb-Douglass technology giving rise to closed cycles around a unique steady state is constructed. The stability of orbits is also studied.

[1]  D. Cass,et al.  The structure and stability of competitive dynamical systems , 1976 .

[2]  D. Sattinger Topics in stability and bifurcation theory , 1973 .

[3]  Gerhard Tintner,et al.  Mathematical Analysis for Economists. , 1938 .

[4]  Paul A. Samuelson,et al.  Prices of Factors and Goods in General Equilibrium , 1953 .

[5]  David A. Starrett,et al.  Mathematical Theories of Economic Growth , 1971 .

[6]  F. Takens,et al.  On the nature of turbulence , 1971 .

[7]  S. Turnovsky,et al.  Applications of control theory to economic analysis , 1977 .

[8]  Mordecai Kurz The General Instability of a Class of Competitive Growth Processes , 1968 .

[9]  J. Benhabib,et al.  On the Uniqueness of Steady States in an Economy with Heterogeneous Capital Goods , 1979 .

[10]  M. Magill,et al.  Some new results on the local stability of the process of capital accumulation , 1977 .

[11]  L. McKenzie,et al.  Equality of Factor Prices in World Trade , 1955 .

[12]  J. Scheinkman On optimal steady states of n-sector growth models when utility is discounted☆ , 1976 .

[13]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[14]  W. Brock Some Results on the Uniqueness of Steady States in Multisector Models of Optimum Growth when Future Utilities are Discounted , 1973 .

[15]  Lancaster vs. samuelson on the shape of the neoclassical transformation surface , 1969 .

[16]  Jose A. Scheinkman,et al.  Stability of Separable Hamiltonians and Investment Theory , 1978 .

[17]  K. Kuga,et al.  On an Intrinsic Joint Production , 1971 .

[18]  Mordecai Kurz,et al.  OPTIMAL ECONOMIC GROWTH AND WEALTH EFFECTS. , 1968 .

[19]  P. Hartman Ordinary Differential Equations , 1965 .

[20]  W. Brock,et al.  Global Asymptotic Stability of Optimal Control Systems with Applications to the Theory of Economic Growth , 1976 .

[21]  J. Scheinkman,et al.  On the Differentiability of the Value Function in Dynamic Models of Economics , 1979 .

[22]  P. Samuelson,et al.  Notes on Turnpikes: Stable and unstable , 1969 .

[23]  D. Sattinger,et al.  Bifurcating time periodic solutions and their stability , 1972 .

[24]  I. Herstein,et al.  Non-Negative Square Matrices , 1952 .

[25]  G. Iooss Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d'evolution du type Navier-Stokes , 1972 .

[26]  G. Debreu,et al.  Nonnegative Square Matrices , 1953 .

[27]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[28]  Jose A. Scheinkman,et al.  Smoothness, Comparative Dynamics, and the Turnpike Property , 1977 .

[29]  K. Kuga,et al.  The Factor-Price Frontier in a Neoclassical Multi-Sector Model , 1970 .