An Experiment in Learning the Language of Sequence Motifs: Sequence Logos vs. Finite-State Machines
暂无分享,去创建一个
Alexandre P. Francisco | Esko Ukkonen | Travis Gagie | Dominik Kempa | Leena Salmela | Jarkko Toivonen | Sophie Sverdlov | E. Ukkonen | Jarkko Toivonen | Leena Salmela | T. Gagie | Dominik Kempa | S. Sverdlov
[1] Mikael Bodén,et al. MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..
[2] Rodrigo Lopez,et al. Clustal W and Clustal X version 2.0 , 2007, Bioinform..
[3] E. Mark Gold,et al. Complexity of Automaton Identification from Given Data , 1978, Inf. Control..
[4] Juan M. Vaquerizas,et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. , 2010, Genome research.
[5] William Stafford Noble,et al. Quantifying similarity between motifs , 2007, Genome Biology.
[6] Damián López,et al. A sufficient condition to polynomially compute a minimum separating DFA , 2016, Inf. Sci..
[7] Markus Holzer,et al. More on deterministic and nondeterministic finite cover automata , 2017, Theor. Comput. Sci..
[8] Juan M. Vaquerizas,et al. DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.
[9] T. D. Schneider,et al. Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli. , 1982, Nucleic acids research.
[10] T. D. Schneider,et al. Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.
[11] François Coste,et al. Learning the Language of Biological Sequences , 2016 .
[12] Barak A. Pearlmutter,et al. Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm , 1998, ICGI.
[13] DANA ANGLUIN,et al. On the Complexity of Minimum Inference of Regular Sets , 1978, Inf. Control..