Exponential-Algebraic Maps and Chaos in 3D Autonomous Quadratic Systems
暂无分享,去创建一个
[1] Guanrong Chen,et al. Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .
[2] Michael Schanz,et al. Critical homoclinic orbits lead to snap-back repellers , 2011 .
[3] Erik Mosekilde,et al. Phase Chaos in the Discrete Kuramoto Model , 2010, Int. J. Bifurc. Chaos.
[4] E. Hopf. A mathematical example displaying features of turbulence , 1948 .
[5] Guanrong Chen,et al. Classification of Chaos in 3-d Autonomous Quadratic Systems-I: Basic Framework and Methods , 2006, Int. J. Bifurc. Chaos.
[6] Peter Schuster,et al. Bifurcation Dynamics of Three-Dimensional Systems , 2000, Int. J. Bifurc. Chaos.
[7] L. Perko,et al. Bounded quadratic systems in the plane , 1970 .
[8] Zdenek Kocan. Chaos on One-Dimensional Compact Metric Spaces , 2012, Int. J. Bifurc. Chaos.
[9] Vasiliy Ye. Belozyorov. General Method of Construction of Implicit Discrete Maps Generating Chaos in 3D Quadratic Systems of Differential Equations , 2014, Int. J. Bifurc. Chaos.
[10] Vasiliy Ye. Belozyorov. New types of 3-D systems of quadratic differential equations with chaotic dynamics based on Ricker discrete population model , 2011, Appl. Math. Comput..
[11] Ayub Khan,et al. Chaotic Properties on Time Varying Map and Its Set Valued Extension , 2013 .
[12] Ying Zhang,et al. Two-Dimensional Dynamical Systems with Periodic Coefficients , 2009, Int. J. Bifurc. Chaos.
[13] Xu Zhang,et al. Constructing Chaotic Polynomial Maps , 2009, Int. J. Bifurc. Chaos.
[14] Ulrike Feudel,et al. Complex Dynamics in multistable Systems , 2008, Int. J. Bifurc. Chaos.
[15] Vasiliy Ye. Belozyorov,et al. Generating Chaos in 3D Systems of quadratic differential equations with 1D exponential Maps , 2013, Int. J. Bifurc. Chaos.
[16] Svetoslav Nikolov,et al. Bifurcations and chaotic behavior on the Lanford system , 2004 .
[17] Peter E. Kloeden,et al. Recent Developments in Dynamical Systems: Three Perspectives , 2010, Int. J. Bifurc. Chaos.