Exponential-Algebraic Maps and Chaos in 3D Autonomous Quadratic Systems

For some 3D autonomous quadratic dynamical systems an explicit autonomous exponential-algebraic 1D map, generating chaos in mentioned systems, is designed. Examples of the systems, where chaos is generated by such discrete maps, are given. New results about an existence of chaotic dynamics in the quadratic 3D systems are also derived. Besides, for the Lanford system (it is 3D autonomous quadratic dynamical system) the value of some parameter at which the system shows increased chaotic behavior is indicated. This assertion is based on the construction for the Lanford system of 2D exponential-algebraic discrete map which possesses chaotic properties.

[1]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[2]  Michael Schanz,et al.  Critical homoclinic orbits lead to snap-back repellers , 2011 .

[3]  Erik Mosekilde,et al.  Phase Chaos in the Discrete Kuramoto Model , 2010, Int. J. Bifurc. Chaos.

[4]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[5]  Guanrong Chen,et al.  Classification of Chaos in 3-d Autonomous Quadratic Systems-I: Basic Framework and Methods , 2006, Int. J. Bifurc. Chaos.

[6]  Peter Schuster,et al.  Bifurcation Dynamics of Three-Dimensional Systems , 2000, Int. J. Bifurc. Chaos.

[7]  L. Perko,et al.  Bounded quadratic systems in the plane , 1970 .

[8]  Zdenek Kocan Chaos on One-Dimensional Compact Metric Spaces , 2012, Int. J. Bifurc. Chaos.

[9]  Vasiliy Ye. Belozyorov General Method of Construction of Implicit Discrete Maps Generating Chaos in 3D Quadratic Systems of Differential Equations , 2014, Int. J. Bifurc. Chaos.

[10]  Vasiliy Ye. Belozyorov New types of 3-D systems of quadratic differential equations with chaotic dynamics based on Ricker discrete population model , 2011, Appl. Math. Comput..

[11]  Ayub Khan,et al.  Chaotic Properties on Time Varying Map and Its Set Valued Extension , 2013 .

[12]  Ying Zhang,et al.  Two-Dimensional Dynamical Systems with Periodic Coefficients , 2009, Int. J. Bifurc. Chaos.

[13]  Xu Zhang,et al.  Constructing Chaotic Polynomial Maps , 2009, Int. J. Bifurc. Chaos.

[14]  Ulrike Feudel,et al.  Complex Dynamics in multistable Systems , 2008, Int. J. Bifurc. Chaos.

[15]  Vasiliy Ye. Belozyorov,et al.  Generating Chaos in 3D Systems of quadratic differential equations with 1D exponential Maps , 2013, Int. J. Bifurc. Chaos.

[16]  Svetoslav Nikolov,et al.  Bifurcations and chaotic behavior on the Lanford system , 2004 .

[17]  Peter E. Kloeden,et al.  Recent Developments in Dynamical Systems: Three Perspectives , 2010, Int. J. Bifurc. Chaos.