The Conditional Common Information in Classical and Quantum Secret Key Distillation

In this paper, we consider two extensions of the Gács–Körner common information to three variables, the <italic>conditional common information</italic> (cCI) and the <italic>coarse-grained conditional common information</italic> (ccCI). Both quantities are shown to be useful technical tools in the study of classical and quantum resource transformations. In particular, the ccCI is shown to have an operational interpretation as the optimal rate of secret key extraction from an eavesdropped classical source <inline-formula> <tex-math notation="LaTeX">$p_{XYZ}$ </tex-math></inline-formula> when Alice (<inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>) and Bob (<inline-formula> <tex-math notation="LaTeX">$Y$ </tex-math></inline-formula>) are unable to communicate but share common randomness with the eavesdropper Eve (<inline-formula> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula>). Moving to the quantum setting, we consider two different ways of generating a tripartite quantum state from classical correlations <inline-formula> <tex-math notation="LaTeX">$p_{XYZ}$ </tex-math></inline-formula>: 1) coherent encodings <inline-formula> <tex-math notation="LaTeX">$\sum _{xyz}\sqrt {p_{xyz}} |xyz\rangle $ </tex-math></inline-formula> and 2) incoherent encodings <inline-formula> <tex-math notation="LaTeX">$\sum _{xyz}p_{xyz} |xyz\rangle \langle xyz|$ </tex-math></inline-formula>. We study how well can Alice and Bob extract secret key from these quantum sources using quantum operations compared with the extraction of key from the underlying classical sources <inline-formula> <tex-math notation="LaTeX">$p_{XYZ}$ </tex-math></inline-formula> using classical operations. While the power of quantum mechanics increases Alice and Bob’s ability to generate shared randomness, it also equips Eve with a greater arsenal of eavesdropping attacks. Therefore, it is not obvious who gains the greatest advantage for distilling secret key when replacing a classical source with a quantum one. We first demonstrate that the classical key rate of <inline-formula> <tex-math notation="LaTeX">$p_{XYZ}$ </tex-math></inline-formula> is equivalent to the quantum key rate for an incoherent quantum encoding of the distribution. For coherent encodings, we next show that the classical and quantum rates are generally incomparable, and in fact, their difference can be arbitrarily large in either direction. Finally, we introduce a “zoo” of entangled tripartite states all characterized by the conditional common information of their encoded probability distributions. Remarkably, for these states almost all entanglement measures, such as Alice and Bob’s entanglement cost, squashed entanglement, and relative entropy of entanglement, can be sharply bounded or even exactly expressed in terms of the conditional common information. In the latter case, we thus present a rare instance in which the various entropic entanglement measures of a quantum state can be explicitly calculated.

[2]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There a Classical Analog to Bound Entanglement? , 2002, Algorithmica.

[3]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[4]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[5]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[6]  M. Wolf,et al.  Irreversibility of entanglement distillation for a class of symmetric states , 2004 .

[7]  Min-Hsiu Hsieh,et al.  Distributions Attaining Secret Key at a Rate of the Conditional Mutual Information , 2015, CRYPTO.

[8]  Karol Horodecki,et al.  Information Theories with Adversaries, Intrinsic Information, and Entanglement , 2005 .

[9]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[10]  N. Gisin,et al.  Quantum correlations and secret bits. , 2003, Physical review letters.

[11]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  M. Horodecki,et al.  Entanglement and thermodynamical analogies , 1998, quant-ph/9805072.

[13]  Andreas J. Winter,et al.  Secret, public and quantum correlation cost of triples of random variables , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[15]  E. Stachow An Operational Approach to Quantum Probability , 1978 .

[16]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[17]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[18]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[19]  Michal Horodecki,et al.  General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.

[20]  Yichen Huang,et al.  Computing quantum discord is NP-complete , 2013, 1305.5941.

[21]  Runyao Duan,et al.  When Do Local Operations and Classical Communication Suffice for Two-Qubit State Discrimination? , 2013, IEEE Transactions on Information Theory.

[22]  Graeme Smith,et al.  Bound entangled states with a private key and their classical counterpart. , 2014, Physical review letters.

[23]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[24]  Renato Renner,et al.  New Bounds in Secret-Key Agreement: The Gap between Formation and Secrecy Extraction , 2003, EUROCRYPT.

[25]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[27]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[28]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Andreas J. Winter,et al.  The Private and Public Correlation Cost of Three Random Variables With Collaboration , 2014, IEEE Transactions on Information Theory.

[30]  Hermann Kampermann,et al.  Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .

[31]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[32]  Robert W. Spekkens,et al.  A classical analogue of negative information , 2005 .

[33]  Mark M. Wilde,et al.  Squashed entanglement and approximate private states , 2016, Quantum Inf. Process..

[34]  S. Popescu,et al.  Classical analog of entanglement , 2001, quant-ph/0107082.

[35]  Min-Hsiu Hsieh,et al.  A Classical Analog to Entanglement Reversibility , 2015, Physical review letters.

[36]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[37]  N. Gisin,et al.  Equivalence between two-qubit entanglement and secure key distribution. , 2003, Physical review letters.

[38]  Eric Chitambar,et al.  Round complexity in the local transformations of quantum and classical states , 2016, Nature Communications.

[39]  Eric Chitambar,et al.  Asymptotic state discrimination and a strict hierarchy in distinguishability norms , 2013, 1311.1536.

[40]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.

[41]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[42]  I. Csiszár,et al.  Common randomness and secret key generation with a helper , 1997, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).