Results on rotation symmetric bent functions

In this paper we analyze the combinatorial properties related to the Walsh spectra of rotation symmetric Boolean functions on even number of variables. These results are then applied in studying rotation symmetric bent functions. For the first time we could present an enumeration strategy for all the 10-variable rotation symmetric bent functions.

[1]  Selçuk Kavut,et al.  Enumeration of 9-Variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240 , 2006, INDOCRYPT.

[2]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[3]  Alexander Maximov,et al.  Classes of Plateaued Rotation Symmetric Boolean Functions under Transformation of Walsh Spectra , 2004, IACR Cryptol. ePrint Arch..

[4]  John A. Clark,et al.  Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion , 2004, Comput. Intell..

[5]  Selçuk Kavut,et al.  Search for Boolean Functions With Excellent Profiles in the Rotation Symmetric Class , 2007, IEEE Transactions on Information Theory.

[6]  Josef Pieprzyk,et al.  Fast Hashing and Rotation-Symmetric Functions , 1999 .

[7]  Josef Pieprzyk,et al.  Rotation-Symmetric Functions and Fast Hashing , 1998, J. Univers. Comput. Sci..

[8]  Martin Hell,et al.  On Efficient Implementation of Search Strategy for RSBFs ∗ , 2006 .

[9]  Caroline Fontaine,et al.  On Some Cosets of the First-Order Reed-Muller Code with High Minimum Weight , 1999, IEEE Trans. Inf. Theory.

[10]  Subhamoy Maitra,et al.  Results on Algebraic Immunity for Cryptographically Significant Boolean Functions , 2004, INDOCRYPT.

[11]  Martin Hell,et al.  Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables , 2004, IACR Cryptol. ePrint Arch..

[12]  Hideki Imai,et al.  Restriction, Terms and Nonlinearity of Boolean Functions , 1999, Theor. Comput. Sci..

[13]  Thomas W. CusickPantelimon Stùanicùa Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions , 2000 .

[14]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[15]  Petr Savický On the Bent Boolean Functions That are Symmetric , 1994, Eur. J. Comb..

[16]  Eric Filiol,et al.  Highly Nonlinear Balanced Boolean Functions with a Good Correlation-Immunity , 1998, EUROCRYPT.

[17]  Pantelimon Stanica,et al.  Rotation symmetric Boolean functions - Count and cryptographic properties , 2003, Discret. Appl. Math..

[18]  Joachim von zur Gathen,et al.  Polynomials with two values , 1997, Comb..

[19]  John A. Clark,et al.  Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions , 2004, FSE.

[20]  Pantelimon Stanica,et al.  Fast evaluation, weights and nonlinearity of rotation-symmetric functions , 2002, Discret. Math..