Complexity bounds for the rational Newton-Puiseux algorithm over finite fields

We carefully study the number of arithmetic operations required to compute rational Puiseux expansions of a bivariate polynomial F over a finite field. Our approach is based on the rational Newton-Puiseux algorithm introduced by D. Duval. In particular, we prove that coefficients of F may be significantly truncated and that certain complexity upper bounds may be expressed in terms of the output size. These preliminary results lead to a more efficient version of the algorithm with a complexity upper bound that improves previously published results. We also deduce consequences for the complexity of the computation of the genus of an algebraic curve defined over a finite field or an algebraic number field. Our results are practical since they are based on well established subalgorithms, such as fast multiplication of univariate polynomials with coefficients in a finite field.

[1]  P. M. Cohn,et al.  Puiseux's theorem revisited , 1984 .

[2]  P. G. Walsh,et al.  A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function , 2000, Math. Comput..

[3]  Martin Eichler,et al.  Introduction to the Theory of Algebraic Numbers and Functions , 1966 .

[4]  H. Piaggio Algebraic Functions , 1952, Nature.

[5]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[6]  Victor Shoup Efficient computation of minimal polynomials in algebraic extensions of finite fields , 1999, ISSAC '99.

[7]  Tateaki Sasaki,et al.  Hensel construction of F(x, u1, ..., xl) l ≥ 2 at a singular point and its applications , 2000, SIGS.

[8]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[9]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[10]  Marc Moreno Maza,et al.  Fast arithmetic for triangular sets: From theory to practice , 2009, J. Symb. Comput..

[11]  J. P. G. Henry,et al.  Complexity of computation of embedded resolution of algebraic curves , 1987, EUROCAL.

[12]  Michael F. Singer,et al.  Linear Differential Operators for Polynomial Equations , 2002, J. Symb. Comput..

[13]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[14]  Erich Kaltofen,et al.  Polynomial factorization: a success story , 2003, ISSAC '03.

[15]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[16]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[17]  Christopher Umans,et al.  Fast polynomial factorization and modular composition in small characteristic , 2008, STOC.

[18]  J. W. Bruce,et al.  LE PROBLÈME DES MODULES POUR LES BRANCHES PLANES , 1988 .

[19]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[20]  Mark van Hoeij,et al.  An Algorithm for Computing an Integral Basis in an Algebraic Function Field , 1994, J. Symb. Comput..

[21]  Adrien Poteaux Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane , 2008 .

[22]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[23]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[24]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, II , 1987, J. Complex..

[25]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.

[26]  Adrien Poteaux,et al.  Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part , 2008, ArXiv.

[27]  C. Hoffmann Algebraic curves , 1988 .

[28]  R. Tennant Algebra , 1941, Nature.

[29]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[30]  Narain Gupta,et al.  On the dimension subgroups of metabelian groups , 1982 .

[31]  Jeremy Teitelbaum,et al.  The computational complexity of the resolution of plane curve singularities , 1990 .

[32]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..

[33]  H. T. Kung,et al.  All Algebraic Functions Can Be Computed Fast , 1978, JACM.

[34]  Grégoire Lecerf,et al.  Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.

[35]  Éric Schost,et al.  Modular Composition Modulo Triangular Sets and Applications , 2013, computational complexity.

[36]  P. G. Walsh,et al.  ON THE COMPLEXITY OF RATIONAL PUISEUX EXPANSIONS , 1999 .

[37]  Alexander L. Chistov Polynomial Complexity of the Newton-Puiseux Algorithm , 1986, MFCS.

[38]  Michel Merle,et al.  Le problème des modules pour les branches planes : cours donné au Centre de mathématiques de l'École polytechnique , 1986 .

[39]  Joris van der Hoeven Effective analytic functions , 2005, J. Symb. Comput..

[40]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[41]  C. Chevalley,et al.  Introduction to the theory of algebraic functions of one variable , 1951 .

[42]  Adrien Poteaux,et al.  Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields , 2008, ISSAC '08.

[43]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[44]  Adrien Poteaux,et al.  Computing monodromy groups defined by plane algebraic curves , 2007, SNC '07.

[45]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[46]  David Y. Y. Yun,et al.  On square-free decomposition algorithms , 1976, SYMSAC '76.

[47]  Marc Moreno Maza,et al.  On the complexity of the D5 principle , 2005, SIGS.

[48]  Christopher Umans,et al.  Fast Modular Composition in any Characteristic , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[49]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, I , 1986, J. Complex..

[50]  Adrien Poteaux,et al.  Good reduction of Puiseux series and applications , 2012, J. Symb. Comput..

[51]  D. Duval Rational Puiseux expansions , 1989 .