Influence of applied corneal endothelium image segmentation techniques on the clinical parameters

The corneal endothelium state is verified on the basis of an in vivo specular microscope image from which the shape and density of cells are exploited for data description. Due to the relatively low image quality resulting from a high magnification of the living, non-stained tissue, both manual and automatic analysis of the data is a challenging task. Although, many automatic or semi-automatic solutions have already been introduced, all of them are prone to inaccuracy. This work presents a comparison of four methods (fully-automated or semi-automated) for endothelial cell segmentation, all of which represent a different approach to cell segmentation; fast robust stochastic watershed (FRSW), KH method, active contours solution (SNAKE), and TOPCON ImageNET. Moreover, an improvement framework is introduced which aims to unify precise cell border location in images pre-processed with differing techniques. Finally, the influence of the selected methods on clinical parameters is examined, both with and without the improvement framework application. The experiments revealed that although the image segmentation approaches differ, the measures calculated for clinical parameters are in high accordance when CV (coefficient of variation), and CVSL (coefficient of variation of cell sides length) are considered. Higher variation was noticed for the H (hexagonality) metric. Utilisation of the improvement framework assured better repeatability of precise endothelial cell border location between the methods while diminishing the dispersion of clinical parameter values calculated for such images. Finally, it was proven statistically that the image processing method applied for endothelial cell analysis does not influence the ability to differentiate between the images using medical parameters.

[1]  H. Edelhauser,et al.  Corneal endothelial morphology in the rat. Effects of aging, diabetes, and topical aldose reductase inhibitor treatment. , 1988, Investigative ophthalmology & visual science.

[2]  M. Doughty Concerning the symmetry of the 'hexagonal' cells of the corneal endothelium. , 1992, Experimental eye research.

[3]  Michael Romann,et al.  Validation of digit-length ratio (2D:4D) assessments on the basis of DXA-derived hand scans , 2015, BMC Medical Imaging.

[4]  G. Kluxen,et al.  Irisangiographie und Endothelmikroskopie bei Dysgenesis mesodermalis iridis et corneae , 1983, Klinische Monatsblatter fur Augenheilkunde.

[5]  Alfredo Ruggeri,et al.  Computerized analysis of human corneal endothelium morphology , 2015 .

[6]  A. Riaz,et al.  Corneal confocal microscopy versus specular microscopy in the evaluation of the corneal endothelium , 2004 .

[7]  P. McMenamin A morphological study of the inner surface of the anterior chamber angle in pre and postnatal human eyes. , 1989, Current eye research.

[8]  G. Vrensen,et al.  Corneal endothelium and growth factors. , 1996, Survey of ophthalmology.

[9]  Bettina Selig,et al.  Image segmentation using snakes and stochastic watershed , 2015 .

[10]  Adam Piórkowski,et al.  Selected issues of corneal endothelial image segmentation , 2011 .

[11]  Cris L. Luengo Hendriks,et al.  Improving the stochastic watershed , 2013, Pattern Recognit. Lett..

[12]  M Unser,et al.  Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Paolo Brusini,et al.  Comparison Between Laser Scanning In Vivo Confocal Microscopy and Noncontact Specular Microscopy in Assessing Corneal Endothelial Cell Density and Central Corneal Thickness , 2011, Cornea.

[14]  D. Reska,et al.  Automatic segmentation of corneal endothelial cells using active contours , 2014 .

[15]  Adam Piórkowski,et al.  Cell Detection in Corneal Endothelial Images Using Directional Filters , 2015, IP&C.

[16]  A. Balestrazzi,et al.  Long-term results of combined 1-way phacoemulsification, intraocular lens implantation, and trabeculectomy. , 1999, Journal of cataract and refractive surgery.

[17]  Alfredo Ruggeri,et al.  Segmentation of Corneal Endothelial Cells Contour by Means of a Genetic Algorithm , 2015 .

[18]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[19]  Karolina Nurzynska,et al.  Selected aspects of corneal endothelial segmentation quality , 2015 .

[20]  Adam Piórkowski,et al.  Corneal Endothelial Grid Structure Factor Based on Coefficient of Variation of the Cell Sides Lengths , 2013, IP&C.

[21]  Luc Vincent,et al.  Morphological image processing and network analysis of cornea endothelial cell images , 1992, Optics & Photonics.

[22]  Erik H. W. Meijering,et al.  Cell Segmentation: 50 Years Down the Road [Life Sciences] , 2012, IEEE Signal Processing Magazine.

[23]  Miquel Ralló,et al.  Image processing techniques to quantify microprojections on outer corneal epithelial cells , 2008, Journal of anatomy.

[24]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[25]  Adam Piórkowski,et al.  A Statistical Dominance Algorithm for Edge Detection and Segmentation of Medical Images , 2016, ITIB.

[26]  Filip Malmberg,et al.  Exact Evaluation of Stochastic Watersheds: From Trees to General Graphs , 2014, DGCI.

[27]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[28]  M. Doughty,et al.  A semi-automated assessment of cell size and shape in monolayers, with optional adjustment for the cell-cell border width-application to human corneal endothelium. , 2002, Tissue & cell.

[29]  F J Sanchez-Marin,et al.  Automatic segmentation of contours of corneal cells , 1999, Comput. Biol. Medicine.

[30]  Przemyslaw Mazurek,et al.  Comparison of Assessment Regularity Methods Dedicated to Isotropic Cells Structures Analysis , 2014, IP&C.

[31]  G. Ayala,et al.  Granulometric moments and corneal endothelium status , 2001, Pattern Recognit..

[32]  M. Foracchia,et al.  Cell contour detection in corneal endothelium in-vivo microscopy , 2000, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143).

[33]  Kazuo Nunokawa,et al.  Automated corneal endothelial cell analysis , 1992, [1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems.

[34]  Dominik Sankowski,et al.  Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images , 2011 .

[35]  Marek Kretowski,et al.  MESA: Complete approach for design and evaluation of segmentation methods using real and simulated tomographic images , 2014 .

[36]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[37]  J. Chi,et al.  A histomorphometric study of corneal endothelial cells in normal human fetuses. , 2001, Experimental eye research.

[38]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[39]  Issam Dagher,et al.  WaterBalloons: A hybrid watershed Balloon Snake segmentation , 2008, Image Vis. Comput..

[40]  Roberto de Alencar Lotufo,et al.  Identification and segmentation of cells in images of donated corneas using mathematical morphology , 2000, Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878).

[41]  J. Aquavella,et al.  Cell size-shape relationships in corneal endothelium. , 1982, Investigative ophthalmology & visual science.

[42]  Bartłomiej Płaczek Rough sets in identification of cellular automata for medical image processing , 2013 .

[43]  C. Hanna,et al.  Endothelial cell population changes of human cornea during life. , 1978, Archives of ophthalmology.

[44]  Adam Piórkowski,et al.  Towards Precise Segmentation of Corneal Endothelial Cells , 2015, IWBBIO.

[45]  P M Jacobs,et al.  Precision of cell density estimates and endothelial cell loss with age. , 1985, Archives of ophthalmology.

[46]  Khalid Saeed,et al.  K3M: A universal algorithm for image skeletonization and a review of thinning techniques , 2010, Int. J. Appl. Math. Comput. Sci..

[47]  Adam Piórkowski,et al.  Towards Automated Cell Segmentation in Corneal Endothelium Images , 2014, IP&C.

[48]  H F Edelhauser,et al.  Comparison of the corneal endothelium in an American and a Japanese population. , 1985, Archives of ophthalmology.

[49]  A. Ruggeri,et al.  A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images , 2010, British Journal of Ophthalmology.

[50]  M. Aurangzeb Khan,et al.  Endothelial Cell Image Enhancement using Non-subsampled Image Pyramid , 2007 .

[51]  Cris L. Luengo Hendriks,et al.  Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy , 2015, BMC Medical Imaging.

[52]  J. Pinoli,et al.  Human visual perception and dissimilarity , 2013 .

[53]  J. G. Kim,et al.  Cell Density of the Corneal Endothelium in Human Fetus by Flat Preparation , 2000, Cornea.

[54]  M. Foracchia,et al.  Corneal endothelium analysis by means of Bayesian shape modeling , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[55]  M. Sherwood,et al.  Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. , 2003, Experimental eye research.

[56]  A. Ruggeri,et al.  Corneal Endothelium Cell Field Analysis by means of Interacting Bayesian Shape Models , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[57]  Guillermo Ayala,et al.  Granulometric analysis of corneal endothelium specular images by using a germ-grain model , 2007, Comput. Biol. Medicine.

[58]  M. Doughty The ambiguous coef f icient of variation: Polymegethism of the corneal endothelium and central corneal thickness , 1990 .

[59]  Dominique Jeulin,et al.  Stochastic watershed segmentation , 2007, ISMM.

[60]  Guillermo Ayala,et al.  A granulometric analysis of specular microscopy images of human corneal endothelia , 2005, Comput. Vis. Image Underst..

[61]  Alfredo Ruggeri,et al.  Segmentation of Corneal Endothelial Cells Contour through Classification of Individual Component Signatures , 2014 .

[62]  R A Laing,et al.  Changes in the corneal endothelium as a function of age. , 1976, Experimental eye research.

[63]  Filip Malmberg,et al.  Fast Evaluation of the Robust Stochastic Watershed , 2015, ISMM.

[64]  Kazuyoshi Itoh,et al.  Generalization of shift invariant neural networks: Image processing of corneal endothelium , 1996, Neural Networks.

[65]  S. Cheung,et al.  Endothelial cell analysis using the Topcon SP‐1000 non‐contact specular microscope and IMAGEnet system , 1998 .

[66]  Adam Piórkowski,et al.  Problems of corneal endothelial image binarization , 2011 .