Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations

Publisher Summary This chapter discusses the monotonicity methods in Hilbert spaces and presents some applications to nonlinear partial differential equations. It describes classical properties of maximal monotone operators in Hilbert spaces. It focuses on a particular class of monotone operators, namely those that are gradients of convex functions. The chapter also highlights their specific properties that do not hold for general monotone operators. Evolution equations associated with gradients of convex functions: smoothing effect on the initial data, behavior at infinity, and so on are discussed in the chapter along with some applications to nonlinear partial differential equations.

[1]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[2]  Felix E. Browder,et al.  Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces , 1967 .

[3]  Avner Friedman,et al.  The Stefan problem in several space variables , 1968 .

[4]  Haim Brezis,et al.  Sur la régularité de la solution d'inéquations elliptiques , 1968 .

[5]  Amnon Pazy,et al.  Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .

[6]  G. Minty On the monotonicity of the gradient of a convex function. , 1964 .

[7]  H. Brezis Propriétés Régularisantes de Certains Semi-Groupes Non Linéaires , 1971 .

[8]  H. Brezis,et al.  Semigroups of nonlinear contractions on convex sets , 1970 .

[9]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[10]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[11]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[12]  Haim Brezis,et al.  Perturbations of nonlinear maximal monotone sets in banach space , 1970 .

[13]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[14]  A. Friedman Generalized Heat Transfer between Solids and Gases under Nonlinear Boundary Conditions , 1959 .

[15]  F. Browder,et al.  VARIATIONAL BOUNDARY VALUE PROBLEMS FOR QUASI-LINEAR ELLIPTIC EQUATIONS OF ARBITRARY ORDER. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[17]  F. Browder,et al.  Nonlinear monotone and accretive operators in banach spaces. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Aronson,et al.  Regularity Propeties of Flows Through Porous Media , 1969 .

[19]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[20]  A nonlinear Hille-Yosida-Phillips theorem , 1969 .