Shape Retrieval of Non-rigid 3D Human Models

Abstract3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We have added 145 new models for use as a separate training set, in order to standardise the training data used and provide a fairer comparison. We have also included experiments with the FAUST dataset of human scans. All participants of the previous benchmark study have taken part in the new tests reported here, many providing updated results using the new data. In addition, further participants have also taken part, and we provide extra analysis of the retrieval results. A total of 25 different shape retrieval methods are compared.

[1]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  Harald Niederreiter,et al.  Programs to generate Niederreiter's low-discrepancy sequences , 1994, TOMS.

[4]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[7]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Eric Wahl,et al.  Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[10]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[11]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[12]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[13]  Jean-Marc Chassery,et al.  Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening , 2004, Comput. Graph. Forum.

[14]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[15]  Dragomir Anguelov,et al.  SCAPE: shape completion and animation of people , 2005, ACM Trans. Graph..

[16]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[17]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[18]  Gary K. L. Tam,et al.  Deformable Model Retrieval Based on Topological and Geometric Signatures , 2007, IEEE Trans. Vis. Comput. Graph..

[19]  Ariel Shamir,et al.  Pose-Oblivious Shape Signature , 2007, IEEE Transactions on Visualization and Computer Graphics.

[20]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .

[22]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[23]  Ralph R. Martin,et al.  Shape Deformation Using a Skeleton to Drive Simplex Transformations , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[25]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[26]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[27]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[28]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[30]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[32]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[33]  Bo Li,et al.  3D model retrieval using hybrid features and class information , 2013, Multimedia Tools and Applications.

[34]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[35]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[36]  Mikhail Belkin,et al.  An iterated graph laplacian approach for ranking on manifolds , 2011, KDD.

[37]  Andrea Giachetti,et al.  Radial Symmetry Detection and Shape Characterization with the Multiscale Area Projection Transform , 2012, Comput. Graph. Forum.

[38]  Afzal Godil,et al.  Feature-Preserved 3D Canonical Form , 2013, International Journal of Computer Vision.

[39]  Chunyuan Li Spectral Geometric Methods for Deformable 3D Shape Retrieval , 2013 .

[40]  A. Ben Hamza,et al.  Intrinsic spatial pyramid matching for deformable 3D shape retrieval , 2013, International Journal of Multimedia Information Retrieval.

[41]  A. Ben Hamza,et al.  Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey , 2013, Multimedia Systems.

[42]  Afzal Godil,et al.  CM-BOF: visual similarity-based 3D shape retrieval using Clock Matching and Bag-of-Features , 2013, Machine Vision and Applications.

[43]  Ralph R. Martin,et al.  A Data-Driven Approach to Efficient Character Articulation , 2013, 2013 International Conference on Computer-Aided Design and Computer Graphics.

[44]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[45]  Bo Li,et al.  Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval , 2014, Multimedia Tools and Applications.

[46]  Yizhou Yu,et al.  Fast nonrigid 3D retrieval using modal space transform , 2013, ICMR.

[47]  Alexander M. Bronstein,et al.  Supervised learning of bag‐of‐features shape descriptors using sparse coding , 2014, Comput. Graph. Forum.

[48]  Junwei Han,et al.  Multimodal Feature Fusion for 3D Shape Recognition and Retrieval , 2014, IEEE MultiMedia.

[49]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[50]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Rongrong Ji,et al.  Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition , 2014, IEEE Transactions on Multimedia.

[52]  Cristian Sminchisescu,et al.  Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Yizhou Yu,et al.  A fast modal space transform for robust nonrigid shape retrieval , 2016, The Visual Computer.

[54]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[55]  Ralph R. Martin,et al.  Non-rigid 3D Shape Retrieval , 2015, 3DOR@Eurographics.

[56]  Andrea Giachetti,et al.  SHREC ’ 15 Track : Non-rigid 3 D Shape Retrieval † , 2016 .

[57]  Ralph R. Martin,et al.  Skeleton-based canonical forms for non-rigid 3D shape retrieval , 2016, Computational Visual Media.

[58]  Bangjun Lei,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB, 2nd Edition , 2017 .