Shaping a distributed-rc line to minimize elmore delay

Euler's differential equation of the calculus of variations is used to determine the shape of a distributed-RC wire that minimizes Elmore delay. In two dimensions the optimal shape is an exponential taper. In three dimensions the optimal shape is a frustum of a cone.

[1]  Mark Horowitz,et al.  Signal Delay in RC Tree Networks , 1983, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  Sachin S. Sapatnekar,et al.  RC Interconnect Optimization under the Elmore Delay Model , 1994, 31st Design Automation Conference.

[3]  Jirí Vlach,et al.  Group delay as an estimate of delay in logic , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  J.D. Meindl,et al.  Optimal interconnection circuits for VLSI , 1985, IEEE Transactions on Electron Devices.

[5]  Daniel W. Dobberpuhl,et al.  The design and analysis of VLSI circuits , 1985 .

[6]  Andrew B. Kahng,et al.  Fidelity and near-optimality of Elmore-based routing constructions , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.

[7]  庄司 正一,et al.  CMOS digital circuit technology , 1988 .

[8]  J. Cong,et al.  Optimal wiresizing under the distributed Elmore delay model , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[9]  U. Kumar,et al.  A bibliography of distributed-RC networks , 1980, IEEE Circuits & Systems Magazine.

[10]  Mohammed Ghausi,et al.  Introduction to distributed-parameter networks , 1968 .

[11]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[12]  G. A. Sai-Halasz,et al.  Performance trends in high-end processors , 1995, Proc. IEEE.

[13]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .