Controlled Aggregate Tree Shaped Questions over Ontologies

Controlled languages (CLs) are ambiguity-free subsets of natural languages such as English offering a good trade-off between the formal rigor of ontology and query languages and the intuitive appeal of natural language. They compositionally map (modulo a compositional translation *** (·)) into (or express ) formal query languages and ontology languages. Modulo compositionality, they inherit the computational properties of such ontology/query languages. In the setting of OBDAS, we are interested in capturing query answering and measuring computational complexity w.r.t. the data queried (a.k.a. data complexity ). In this paper we focus in defining a CL capable of expressing a subset SQL aggregate queries , and study its data complexity w.r.t. several ontology languages and extensions of the query language.

[1]  Abraham Bernstein,et al.  Querying Ontologies: A Controlled English Interface for End-Users , 2005, SEMWEB.

[2]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[3]  Diego Calvanese,et al.  Controlled English Ontology-Based Data Access , 2009, CNL.

[4]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[5]  Enrico Motta,et al.  The Semantic Web - ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005, Proceedings , 2005, SEMWEB.

[6]  Diego Calvanese,et al.  Aggregate queries over ontologies , 2008, ONISW '08.

[7]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[8]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[9]  Steffen Staab,et al.  International Handbooks on Information Systems , 2013 .

[10]  R. Bernardi,et al.  Lite Natural Language , 2006 .

[11]  Andrea Schaerf,et al.  On the complexity of the instance checking problem in concept languages with existential quantification , 1993, Journal of Intelligent Information Systems.

[12]  Karen Spärck Jones,et al.  Natural language interfaces to databases , 1990, The Knowledge Engineering Review.

[13]  James Clifford,et al.  Natural Language Querying of Historical Databases -- the Qe-Iii Language Definition and Examples , 1987 .

[14]  Steffen Staab,et al.  Handbook on Ontologies (International Handbooks on Information Systems) , 2004 .

[15]  Diego Calvanese,et al.  Exploring Controlled English Ontology-Based Data Access , 2009, CNL.

[16]  Yoad Winter,et al.  Controlled Language for Geographical Information System Queries , 2006 .

[17]  Allan Third,et al.  More Fragments of Language , 2006, Notre Dame J. Formal Log..

[18]  Ian Pratt-Hartmann,et al.  Complexity of the Two-Variable Fragment with Counting Quantifiers , 2005, J. Log. Lang. Inf..

[19]  Peter Thanisch,et al.  Natural Language Interfaces to Databases , 1994 .

[20]  Peter Thanisch,et al.  Natural language interfaces to databases – an introduction , 1995, Natural Language Engineering.

[21]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[22]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[23]  Kaarel Kaljurand,et al.  Mapping Attempto Controlled English to OWL DL , 2006 .

[24]  Ian Pratt-Hartmann Complexity of the Two-Variable Fragment with Counting Quantifiers , 2005, J. Log. Lang. Inf..

[25]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.