Fully asynchronous behavior of double-quiescent elementary cellular automata
暂无分享,去创建一个
[1] B A Huberman,et al. Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[2] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[3] Nazim Fatès,et al. Cellular Automata , 2004, Lecture Notes in Computer Science.
[4] Nazim Fatès,et al. An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..
[5] P. Louis. Automates Cellulaires Probabilistes : mesures stationnaires, mesures de Gibbs associées et ergodicité , 2002 .
[6] E. S. Gopi,et al. Probability And Random Process , 2007 .
[7] Rodney A. Brooks,et al. Asynchrony induces stability in cellular automata based models , 1994 .
[8] J. van Leeuwen,et al. Theoretical Computer Science , 2003, Lecture Notes in Computer Science.
[9] Nazim Fatès. Robustesse de la dynamique des systèmes discrets : le cas de l'asynchronisme dans les automates cellulaires , 2004 .
[10] T. E. Ingerson,et al. Structure in asynchronous cellular automata , 1984 .
[11] Stephen Wolfram,et al. Universality and complexity in cellular automata , 1983 .
[12] Massimiliano Mattera. Annihilating random walks and perfect matchings of planar graphs , 2003, DRW.
[13] D. Vere-Jones. Markov Chains , 1972, Nature.
[14] M. Nowak,et al. Evolutionary games and spatial chaos , 1992, Nature.
[15] Péter Gács,et al. Deterministic computations whose history is independent of the order of asynchronous updating , 2001, ArXiv.
[16] B. Schönfisch,et al. Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.