Random matrices, generalized zeta functions and self-similarity of zero distributions

There is growing evidence for a connection between random matrix theories used in physics and the theory of the Riemann zeta function and L-functions. The theory underlying the location of the zeros of these generalized zeta functions is one of the key unsolved problems. Physicists are interested because of the Hilbert–Polya conjecture, that the non-trivial zeros of the zeta function correspond to the eigenvalues of some positive operator. To complement the continuing theoretical work, it would be useful to study empirically the locations of the zeros by different methods. In this paper we use the rescaled range analysis to study the spacings between successive zeros of these functions. Over large ranges of the zeros the spacings have a Hurst exponent of about 0.095, using sample sizes of 10 000 zeros. This implies that the distribution has a high fractal dimension (1.9), and shows a lot of detailed structure. The distribution is of the anti-persistent fractional Brownian motion type, with a significant degree of anti-persistence. Thus, the high-order zeros of these functions show a remarkable self-similarity in their distribution, over fifteen orders of magnitude for the Riemann zeta function! We find that the Hurst exponents for the random matrix theories show a different behaviour. A heuristic study of the effect of low-order primes seems to show that this effect is a promising candidate to explain the results that we observe in this study. We study the distribution of zeros for L-functions of conductors 3 and 4, and find that the distribution is similar to that of the Riemann zeta functions.

[1]  E. B. Bogomolnyi,et al.  Random matrix theory and the Riemann zeros. I. Three- and four-point correlations , 1995 .

[2]  J. Keating,et al.  Random matrix theory and the Riemann zeros II: n -point correlations , 1996 .

[3]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[4]  Michel L. Lapidus,et al.  Dynamical, Spectral, and Arithmetic Zeta Functions , 2006 .

[5]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[6]  M. Berry The Bakerian Lecture, 1987. Quantum chaology , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[8]  E. Landau,et al.  Über die Nullstellen der Zetafunktion , 1912 .

[9]  Neil O'Connell,et al.  On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .

[10]  Edgar E. Peters Chaos and order in the capital markets , 1991 .

[11]  Hugh L. Montgomery,et al.  Pair Correlation of Zeros and Primes in Short Intervals , 1987 .

[12]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[13]  M. Berry Semiclassical formula for the number variance of the Riemann zeros , 1988 .

[14]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[15]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[16]  J. P. Keating,et al.  Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[18]  J. Brian Conrey,et al.  Mean values of L-functions and symmetry , 1999, math/9912107.

[19]  E. Wigner Random Matrices in Physics , 1967 .

[20]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[22]  Marc,et al.  Probability laws related to the Jacobi theta andRiemann zeta functions , and Brownian , 1999 .

[23]  Dennis A. Hejhal,et al.  On the triple correlation of zeros of the zeta function , 1994 .

[24]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[25]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[26]  Fotini Pallikari,et al.  A Rescaled Range Analysis of Random Events 1 , 1999 .

[27]  Peter Sarnak,et al.  Zeros of principal $L$-functions and random matrix theory , 1996 .

[28]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[29]  M. V. Berry,et al.  Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .

[30]  H. Montgomery Topics in Multiplicative Number Theory , 1971 .

[31]  M. Gaudin Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .

[32]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[33]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[34]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[35]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[36]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[37]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[38]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .