Random matrices, generalized zeta functions and self-similarity of zero distributions
暂无分享,去创建一个
[1] E. B. Bogomolnyi,et al. Random matrix theory and the Riemann zeros. I. Three- and four-point correlations , 1995 .
[2] J. Keating,et al. Random matrix theory and the Riemann zeros II: n -point correlations , 1996 .
[3] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[4] Michel L. Lapidus,et al. Dynamical, Spectral, and Arithmetic Zeta Functions , 2006 .
[5] A. Levine,et al. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.
[6] M. Berry. The Bakerian Lecture, 1987. Quantum chaology , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[8] E. Landau,et al. Über die Nullstellen der Zetafunktion , 1912 .
[9] Neil O'Connell,et al. On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .
[10] Edgar E. Peters. Chaos and order in the capital markets , 1991 .
[11] Hugh L. Montgomery,et al. Pair Correlation of Zeros and Primes in Short Intervals , 1987 .
[12] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[13] M. Berry. Semiclassical formula for the number variance of the Riemann zeros , 1988 .
[14] A. Odlyzko. On the distribution of spacings between zeros of the zeta function , 1987 .
[15] Nicholas M. Katz,et al. Random matrices, Frobenius eigenvalues, and monodromy , 1998 .
[16] J. P. Keating,et al. Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] M. L. Mehta,et al. ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .
[18] J. Brian Conrey,et al. Mean values of L-functions and symmetry , 1999, math/9912107.
[19] E. Wigner. Random Matrices in Physics , 1967 .
[20] M. Berry,et al. Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[21] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[22] Marc,et al. Probability laws related to the Jacobi theta andRiemann zeta functions , and Brownian , 1999 .
[23] Dennis A. Hejhal,et al. On the triple correlation of zeros of the zeta function , 1994 .
[24] Nina C Snaith,et al. Random Matrix Theory and L-Functions at s= 1/2 , 2000 .
[25] H. E. Hurst,et al. Long-Term Storage Capacity of Reservoirs , 1951 .
[26] Fotini Pallikari,et al. A Rescaled Range Analysis of Random Events 1 , 1999 .
[27] Peter Sarnak,et al. Zeros of principal $L$-functions and random matrix theory , 1996 .
[28] J. P. Keating,et al. Integral Moments of L‐Functions , 2002, math/0206018.
[29] M. V. Berry,et al. Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .
[30] H. Montgomery. Topics in Multiplicative Number Theory , 1971 .
[31] M. Gaudin. Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .
[32] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[33] P. Sarnak,et al. Zeroes of zeta functions and symmetry , 1999 .
[34] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[35] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[36] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[37] J. P. Keating,et al. Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.
[38] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .