A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations

Abstract Fractional diffusion equations have found increasingly more applications in recent years but introduce new mathematical and numerical difficulties. Galerkin formulation, which was proved to be coercive and well-posed for fractional diffusion equations with a constant diffusivity coefficient, may lose its coercivity for variable-coefficient problems. The corresponding finite element method fails to converge. We utilize the discontinuous Petrov–Galerkin (DPG) framework to develop a Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. We prove the well-posedness and optimal-order convergence of the Petrov–Galerkin finite element method. Numerical examples are presented to verify the theoretical results.

[1]  Vickie E. Lynch,et al.  Fractional diffusion in plasma turbulence , 2004 .

[2]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[3]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[4]  I. Babuska Error-bounds for finite element method , 1971 .

[5]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[6]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[7]  J. L. Lage,et al.  Application of Fractional Calculus to Fluid Mechanics , 2002 .

[8]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[9]  H Lippert,et al.  How preservation time changes the linear viscoelastic properties of porcine liver. , 2013, Biorheology.

[10]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[11]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[12]  John W. Barrett,et al.  Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems , 1984 .

[13]  Vijay P. Singh,et al.  Numerical Solution of Fractional Advection-Dispersion Equation , 2004 .

[14]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[15]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[16]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[17]  Vasily E. Tarasov,et al.  Lattice model with power-law spatial dispersion for fractional elasticity , 2013, 1501.01201.

[18]  Hong Wang,et al.  Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..

[19]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[20]  M. Meerschaert,et al.  Fractional conservation of mass , 2008 .

[21]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[22]  J. Bear Hydraulics of Groundwater , 1979 .

[23]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[24]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[25]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[26]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[27]  Bradley E. Treeby,et al.  Erratum: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian [J. Acoust. Soc. Am. 127, 2741–2748 (2010)] , 2011 .

[28]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[29]  Hong Wang,et al.  Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations , 2014, SIAM J. Numer. Anal..

[30]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[31]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[32]  William Rundell,et al.  Variational formulation of problems involving fractional order differential operators , 2013, Math. Comput..

[33]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[34]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[35]  Chae Young Lim,et al.  Parameter estimation for fractional transport: A particle‐tracking approach , 2009 .

[36]  Hong Wang,et al.  A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..

[37]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[38]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.