Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame

Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[3]  J. Dacles-Mariani,et al.  Numerical/experimental study of a wingtip vortex in the near field , 1995 .

[4]  Gloria K. Yamauchi,et al.  Overview of the Testing of a Small-Scale Proprotor , 1999 .

[5]  Robert T. Biedron,et al.  Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications , 2009 .

[6]  G. Kreisselmeier,et al.  SYSTEMATIC CONTROL DESIGN BY OPTIMIZING A VECTOR PERFORMANCE INDEX , 1979 .

[7]  Juan J. Alonso,et al.  Preliminary Study on Time-Spectral and Adjoint-Based Design Optimization of Helicopter Rotors , 2008 .

[8]  W. K. Anderson,et al.  Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .

[9]  Chongam Kim,et al.  Coupled CFD/CSD Analysis of a Hovering Rotor Using High Fidelity Unsteady Aerodynamics and a Geometrically Exact Rotor Blade Analysis , 2008 .

[10]  P. Gill,et al.  User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear Programming. , 1983 .

[11]  James M Modisette,et al.  An Output-based Adaptive and Higher-Order Method for a Rotor in Hover , 2008 .

[12]  E. Nielsen,et al.  Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design , 2005 .

[13]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[14]  Gloria K. Yamauchi,et al.  Airloads Measurements from a 1/4-Scale Tiltrotor Wind Tunnel Test , 1999 .

[15]  A Samareh Jamshid,et al.  A Novel Shape Parameterization Approach , 1999 .

[16]  B. Diskin,et al.  Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids , 2009 .

[17]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[18]  Bengt Fornberg,et al.  Numerical Differentiation of Analytic Functions , 1981, TOMS.

[19]  Peter A. Gnoffo,et al.  Collaborative Software Development in Support of Fast Adaptive AeroSpace Tools (FAAST) , 2003 .

[20]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[21]  D. Darmofal,et al.  An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids , 2004 .

[22]  Elizabeth M. Lee-Rausch,et al.  Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling , 2008 .

[23]  David L. Darmofal,et al.  Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction , 2008 .

[24]  Peter F. Lorber,et al.  Design and Evaluation of Slatted Airfoils for Improved Rotor Performance , 2006 .

[25]  W. K. Anderson,et al.  Sensitivity Analysis for Navier-Stokes Equations on Unstructured Meshes Using Complex Variables , 2001 .

[26]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[27]  Mark Potsdam,et al.  Rotor Airloads Prediction Using Loose Aerodynamic/Structural Coupling , 2004 .

[28]  George N. Barakos,et al.  Computational analysis of rotor-fuselage interactional aerodynamics using sliding-plane CFD method , 2008 .

[29]  Sheng,et al.  Application of Computational Fluid Dynamics During the Conceptual Design of the Bell JHL Quad-Tiltrotor , 2007 .

[30]  Mark E. Calvert,et al.  AN EXAMINATION OF ENGINE EFFECTS ON HELICOPTER AEROMECHANICS , 2007 .

[31]  J. N. Lyness Numerical algorithms based on the theory of complex variable , 1967, ACM National Conference.

[32]  David Anthony Venditti,et al.  Grid adaptation for functional outputs of compressible flow simulations , 2000 .

[33]  D. Mavriplis Solution of the Unsteady Discrete Adjoint for Three-Dimensional Problems on Dynamically Deforming Unstructured Meshes , 2008 .

[34]  Shahyar Pirzadeh,et al.  Three-dimensional unstructured viscous grids by the advancing-layers method , 1996 .

[35]  E. Nielsen,et al.  Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation , 1998 .

[36]  Gene Hou,et al.  Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations , 1999 .