Rate Distortion Function in the Spin Glass State: A Toy Model
暂无分享,去创建一个
[1] Aaron D. Wyner,et al. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .
[2] Bernard Derrida,et al. The random energy model , 1980 .
[3] Y. Kabashima,et al. Statistical mechanics of lossy data compression using a nonmonotonic perceptron. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[5] D. Sherrington,et al. Graph bipartitioning and spin glasses on a random network of fixed finite valence , 1987 .
[6] D. Saad,et al. Statistical mechanics of error-correcting codes , 1999 .
[7] H. Yamamoto,et al. A coding theorem for lossy data compression by LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[8] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[9] Andrea Montanari,et al. The statistical mechanics of turbo codes , 1999 .
[10] B. Derrida. Random-energy model: An exactly solvable model of disordered systems , 1981 .
[11] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[12] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing , 2001 .
[13] Saad,et al. Typical performance of gallager-type error-correcting codes , 2000, Physical review letters.
[14] Tatsuto Murayama,et al. Statistical mechanics of the data compression theorem , 2002 .
[15] Viktor Dotsenko,et al. Introduction to the Replica Theory of Disordered Statistical Systems: Introduction , 2000 .
[16] Nicolas Sourlas,et al. Spin-glass models as error-correcting codes , 1989, Nature.