A simulated annealing driven multi-start algorithm for bound constrained global optimization

A derivative-free simulated annealing driven multi-start algorithm for continuous global optimization is presented. We first propose a trial point generation scheme in continuous simulated annealing which eliminates the need for the gradient-based trial point generation. We then suitably embed the multi-start procedure within the simulated annealing algorithm. We modify the derivative-free pattern search method and use it as the local search in the multi-start procedure. We study the convergence properties of the algorithm and test its performance on a set of 50 problems. Numerical results are presented which show the robustness of the algorithm. Numerical comparisons with a gradient-based simulated annealing algorithm and three population-based global optimization algorithms show that the new algorithm could offer a reasonable alternative to many currently available global optimization algorithms, specially for problems requiring 'direct search' type algorithm.

[1]  Kaelo Some Population Set-Based Methods for Unconstrained Global Optimization , 2006 .

[2]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[3]  Charles Audet Convergence Results for Generalized Pattern Search Algorithms are Tight , 2004 .

[4]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[5]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[6]  Musa Nur Gabere,et al.  Simulated annealing driven pattern search algorithms for global optimization , 2008 .

[7]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[8]  W. Price Global optimization by controlled random search , 1983 .

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  C. Storey,et al.  Aspiration Based Simulated Annealing Algorithm , 1997, J. Glob. Optim..

[11]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[12]  C. Storey,et al.  Application of Stochastic Global Optimization Algorithms to Practical Problems , 1997 .

[13]  M. Montaz Ali,et al.  A Numerical Comparison of Some Modified Controlled Random Search Algorithms , 1997, J. Glob. Optim..

[14]  Panos M. Pardalos,et al.  Speeding up continuous GRASP , 2010, Eur. J. Oper. Res..

[15]  M. M. Ali,et al.  Improved particle swarm algorithms for global optimization , 2008, Appl. Math. Comput..

[16]  Charles Audet,et al.  Convergence Results for Pattern Search Algorithms are Tight , 2002 .

[17]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[18]  L. P. Fatti,et al.  A Differential Free Point Generation Scheme in the Differential Evolution Algorithm , 2006, J. Glob. Optim..

[19]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[20]  Marco Locatelli,et al.  Convergence of a Simulated Annealing Algorithm for Continuous Global Optimization , 2000, J. Glob. Optim..

[21]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..