A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously

Abstract In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions.

[1]  Petko D. Proinov Semilocal convergence of two iterative methods for simultaneous computation of polynomial zeros , 2007, 0709.1068.

[2]  M. Petkovic,et al.  Point estimation of simultaneous methods for solving polynomial equations , 2007 .

[3]  Carsten Carstensen,et al.  Weierstrass formula and zero-finding methods , 1995 .

[4]  Miodrag S. Petković,et al.  Point Estimation of Root Finding Methods , 2008 .

[5]  Nikolay Kyurkchiev,et al.  Initial Approximations and Root Finding Methods , 1998 .

[6]  Petko D. Proinov General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..

[7]  Petko D. Proinov A new semilocal convergence theorem for the Weierstrass method from data at one point , 2006 .

[8]  W. Deren,et al.  The theory of Smale's point estimation and its applications , 1995 .

[9]  Prashant Batra,et al.  Improvement of a convergence condition for the Durand-Kerner iteration , 1998 .

[10]  Karl Weierstrass,et al.  Mathematische Werke: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen , 2013 .

[11]  Marica D. Presić A convergence theorem for a method for simultaneous determination of all zeros of a polynomial. , 1980 .

[12]  Miodrag S. Petkovic,et al.  Safe convergence of simultaneous methods for polynomial zeros , 2004, Numerical Algorithms.

[13]  Miodrag S. Petkovic,et al.  On initial conditions for the convergence of simultaneous root finding methods , 1996, Computing.

[14]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[15]  Immo O. Kerner,et al.  Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen , 1966 .