A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously
暂无分享,去创建一个
[1] Petko D. Proinov. Semilocal convergence of two iterative methods for simultaneous computation of polynomial zeros , 2007, 0709.1068.
[2] M. Petkovic,et al. Point estimation of simultaneous methods for solving polynomial equations , 2007 .
[3] Carsten Carstensen,et al. Weierstrass formula and zero-finding methods , 1995 .
[4] Miodrag S. Petković,et al. Point Estimation of Root Finding Methods , 2008 .
[5] Nikolay Kyurkchiev,et al. Initial Approximations and Root Finding Methods , 1998 .
[6] Petko D. Proinov. General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..
[7] Petko D. Proinov. A new semilocal convergence theorem for the Weierstrass method from data at one point , 2006 .
[8] W. Deren,et al. The theory of Smale's point estimation and its applications , 1995 .
[9] Prashant Batra,et al. Improvement of a convergence condition for the Durand-Kerner iteration , 1998 .
[10] Karl Weierstrass,et al. Mathematische Werke: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen , 2013 .
[11] Marica D. Presić. A convergence theorem for a method for simultaneous determination of all zeros of a polynomial. , 1980 .
[12] Miodrag S. Petkovic,et al. Safe convergence of simultaneous methods for polynomial zeros , 2004, Numerical Algorithms.
[13] Miodrag S. Petkovic,et al. On initial conditions for the convergence of simultaneous root finding methods , 1996, Computing.
[14] Petko D. Proinov. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..
[15] Immo O. Kerner,et al. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen , 1966 .