Numerical aspects and implementation of population balance equations coupled with turbulent fluid dynamics

Abstract In this paper, we present numerical techniques for one-way coupling of CFD and Population Balance Equations (PBE) based on the incompressible flow solver FeatFlow which is extended with Chien’s Low-Reynolds number k – ɛ turbulence model, and breakage and coalescence closures. The presented implementation ensures strictly conservative treatment of sink and source terms which is enforced even for geometric discretization of the internal coordinate. The validation of our implementation which covers wide range of computational and experimental problems enables us to proceed into three-dimensional applications as, turbulent flows in a pipe and through a static mixer. The aim of this paper is to highlight the influence of different formulations of the novel theoretical breakage and coalescence models on the equilibrium distribution of population, and to propose an implementation strategy for three-dimensional one-way coupled CFD–PBE model.

[1]  Juan C. Lasheras,et al.  On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles , 1999, Journal of Fluid Mechanics.

[2]  Khellil Sefiane,et al.  3rd International Symposium on Two-phase Flow Modeling and Experimentation , 2004 .

[3]  Gerhart Eigenberger,et al.  Dynamic Numerical Simulation of Gas-Liquid Two Phase Flows, Euler-Euler versus Euler-Lagrange , 1997 .

[4]  J. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes , 1955 .

[5]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization—II. A moving pivot technique , 1996 .

[6]  Dmitri Kuzmin,et al.  Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .

[7]  Costas Tsouris,et al.  Breakage and coalescence models for drops in turbulent dispersions , 1994 .

[8]  Gerhart Eigenberger,et al.  Applicability of the standard k–ε turbulence model to the dynamic simulation of bubble columns. Part II:: Comparison of detailed experiments and flow simulations , 1999 .

[9]  Hanns Hofmann,et al.  Investigations and modelling of bubble columns , 1992 .

[10]  Stefano Bove Computional Fluid Dynamics of Gas-Liquid Flows including Bubble Population Balances , 2005 .

[11]  Panagiota Angeli,et al.  Population balance modelling of phase inversion in liquid–liquid pipeline flows , 2006 .

[12]  Juan C. Lasheras,et al.  On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency , 1999, Journal of Fluid Mechanics.

[13]  Vivek V. Ranade,et al.  Dynamics of gas-liquid flow in a rectangular bubble column: Experiments and single/multi-group CFD simulations , 2002 .

[14]  Neal R. Amundson,et al.  Analysis of Breakage in Dispersed Phase Systems , 1966 .

[15]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[16]  K. Chien,et al.  Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model , 1982 .

[17]  D. Kuzmin,et al.  NUMERICAL SIMULATION OF TURBULENT BUBBLY FLOWS , 2004 .

[18]  Kai Sundmacher,et al.  CFD modelling of BaSO4 precipitation inside microemulsion droplets in a semi-batch reactor , 2008 .

[19]  Daniele Marchisio,et al.  Implementation of the Quadrature Method of Moments in CFD codes for aggregation-breakage problems , 2003 .

[20]  Gabriel Wild,et al.  Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up , 2001 .

[21]  Robert McGraw,et al.  Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments , 2003 .

[22]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[23]  Andrew N. Hrymak,et al.  Dispersion of high-viscosity liquid-liquid systems by flow through SMX static mixer elements , 2007 .

[24]  D. Ramkrishna,et al.  ON THE SOLUTION OF POPULATION BALANCE EQUATIONS BY DISCRETIZATION--I . A FIXED PIVOT TECHNIQUE , 2003 .

[25]  R. Fox,et al.  Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds , 2004 .

[26]  H. Svendsen,et al.  Theoretical model for drop and bubble breakup in turbulent dispersions , 1996 .

[27]  P. Wilkinson,et al.  Physical aspects and scale-up of high pressure bubble columns , 1991 .

[28]  Dieter Mewes,et al.  A transport equation for the interfacial area density applied to bubble columns , 2001 .

[29]  Lawrence L. Tavlarides,et al.  Drop size distributions and coalescence frequencies of liquid‐liquid dispersions in flow vessels , 1976 .

[30]  Gustavo C. Buscaglia,et al.  A Note on the Numerical Treatment of the k-epsilon Turbulence Model* , 2001 .

[31]  Jiyuan Tu,et al.  On the modelling of population balance in isothermal vertical bubbly flows - average bubble number density approach , 2007 .

[32]  Ville Alopaeus,et al.  Modelling local bubble size distributions in agitated vessels , 2007 .

[33]  E. B. Nauman,et al.  Static Mixers in the Process Industries—A Review , 2003 .

[34]  D. Mewes,et al.  Bubble‐Size distributions and flow fields in bubble columns , 2002 .

[35]  Milorad P. Dudukovic,et al.  Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures , 2005 .

[36]  D. Kuzmin,et al.  Algebraic Flux Correction II , 2012 .

[37]  H. Blanch,et al.  Bubble coalescence and break‐up in air‐sparged bubble columns , 1990 .

[38]  Margaritis Kostoglou,et al.  Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence , 2005 .

[39]  V. M. Tikhomirov,et al.  On the Breakage of Drops in a Turbulent Flow , 1991 .

[40]  L. Erickson,et al.  DYNAMICS OF BUBBLE SIZE DISTRIBUTION IN TURBULENT GAS-LIQUID DISPERSIONS , 1987 .

[41]  Dieter Mewes,et al.  Interfacial area density in bubbly flow , 1999 .

[42]  Carlos A. Dorao,et al.  Modeling of Bubble Column Reactors: Progress and Limitations , 2005 .

[43]  Stefan Turek,et al.  MULTIDIMENSIONAL FEM-TVD PARADIGM FOR CONVECTION-DOMINATED FLOWS , 2004 .

[44]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[45]  Tron Solberg,et al.  CFD modelling of fast chemical reactions in turbulent liquid flows , 2002 .

[46]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[47]  Pascal Gardin,et al.  Probabilistic approach for break-up and coalescence in bubbly-flow and coupling with CFD codes , 2007 .

[48]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[49]  D. Kuzmin,et al.  Algebraic Flux Correction III. Incompressible Flow Problems , 2005 .

[50]  Stefan Turek,et al.  On the implementation of the κ-ε turbulence model in incompressible flow solvers based on a finite element discretisation , 2007, Int. J. Comput. Sci. Math..

[51]  Jinfu Wang,et al.  A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow , 2003 .

[52]  Gerhart Eigenberger,et al.  Applicability of the standard k–ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations , 1999 .

[53]  Alvin W. Nienow,et al.  Bubble sizes in agitated air-alcohol systems with and without particles : Turbulent and transitional flow , 2005 .