Probabilistic Magnetotelluric Inversion with Adaptive Regularisation Using the No-U-Turns Sampler
暂无分享,去创建一个
[1] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[2] James R. Wait,et al. Theory of magnetotelluric fields , 1962 .
[3] J. Kruschke. Chapter 8 – JAGS , 2015 .
[4] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[5] Michel Roussignol,et al. Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .
[6] P. Mair,et al. Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R , 2007 .
[7] James T. Thorson,et al. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .
[8] Creutz. Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.
[9] S. Gezari,et al. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.
[10] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[11] Eric Mandolesi,et al. A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data , 2018, Comput. Geosci..
[12] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[13] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[14] Lars Krieger,et al. MTpy: A Python toolbox for magnetotellurics , 2014, Comput. Geosci..
[15] D. W. Scott. On optimal and data based histograms , 1979 .
[16] Jasper A. Vrugt,et al. High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .
[17] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[18] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[19] Jinsong Chen,et al. Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .
[20] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[21] B. Minsley. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .
[22] M. Menvielle,et al. Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case , 1999 .
[23] Thomas Kalscheuer,et al. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system , 2015 .
[24] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[25] Junjing Yang,et al. Bayesian calibration of building energy models with large datasets , 2017 .
[26] J. A. Vrugt,et al. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.
[27] Stan E. Dosso,et al. Non-linearity in Bayesian 1-D magnetotelluric inversion , 2011 .
[28] John K. Kruschke,et al. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .
[29] Michel Roussignol,et al. Bayesian inversion with Markov chains—II. The one‐dimensional DC multilayer case , 1999 .
[30] George E. Backus,et al. Bayesian inference in geomagnetism , 1988 .
[31] Jasper A. Vrugt,et al. PyDREAM: high-dimensional parameter inference for biological models in python , 2017, Bioinform..