Full Rank Representation of Real Algebraic Sets and Applications

We introduce the notion of the full rank representation of a real algebraic set, which represents it as the projection of a union of real algebraic manifolds \(V_{\mathbb {R}}(F_i)\) of \(\mathbb {R}^m\), \(m\ge n\), such that the rank of the Jacobian matrix of each \(F_i\) at any point of \(V_{\mathbb {R}}(F_i)\) is the same as the number of polynomials in \(F_i\).

[1]  Changbo Chen,et al.  A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications , 2016, CASC.

[2]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[3]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[4]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[5]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[6]  Mohab Safey El Din,et al.  Critical Point Computations on Smooth Varieties: Degree and Complexity Bounds , 2016, ISSAC.

[7]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[8]  J. Hauenstein Numerically Computing Real Points on Algebraic Sets , 2011, Acta Applicandae Mathematicae.

[9]  Mohab Safey El Din,et al.  Variant quantifier elimination , 2012, J. Symb. Comput..

[10]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[11]  Parisa Alvandi,et al.  Regular Chains under Linear Changes of Coordinates and Applications , 2015, CASC.

[12]  Guillaume Moroz,et al.  Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve , 2015, MACIS.

[13]  Jonathan D. Hauenstein,et al.  Validating the Completeness of the Real Solution Set of a System of Polynomial Equations , 2016, ISSAC.

[14]  Anton Leykin Numerical primary decomposition , 2008, ISSAC '08.

[15]  T. Ojika,et al.  Deflation algorithm for the multiple roots of a system of nonlinear equations , 1983 .

[16]  P. Rostalski,et al.  Semidefinite characterization and computation of real radical ideals , 2006 .

[17]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[18]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[19]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[20]  Lihong Zhi,et al.  A certificate for semidefinite relaxations in computing positive-dimensional real radical ideals , 2016, J. Symb. Comput..

[21]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[22]  Bernard Mourrain,et al.  Deflation and certified isolation of singular zeros of polynomial systems , 2011, ISSAC '11.

[23]  Xiao-Shan Gao,et al.  On the Topology and Visualization of Plane Algebraic Curves , 2015, CASC.

[24]  Luisella Caire,et al.  Plane curves as projections of non singular space curves , 1990 .

[25]  Jonathan D. Hauenstein,et al.  What is numerical algebraic geometry , 2017 .

[26]  Bernard Mourrain,et al.  On the computation of the topology of a non-reduced implicit space curve , 2008, ISSAC '08.

[27]  Kai Jin,et al.  Isotopic epsilon-meshing of real algebraic space curves , 2014, SNC.

[28]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[29]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[30]  Wenyuan Wu,et al.  Finding points on real solution components and applications to differential polynomial systems , 2013, ISSAC '13.

[31]  Oliver Labs A List of Challenges for Real Algebraic Plane Curve Visualization Software , 2009 .

[32]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[33]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[34]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..