Graovac–Pisanski index of fullerenes and fullerene–like molecules

ABSTRACT Suppose G is a molecular graph and Γ is a subgroup of its symmetry group. The Graovac–Pisanski index (GP index in short) of G with respect to Γ is a symmetry-based topological index. This topological index gives a distance-symmetry description of the molecular graph G. The aim of this paper is to compute the GP index of some classes of fullerenes and fullerene-like molecules.

[1]  A. Ashrafi,et al.  Topological Modelling of Nanostructures and Extended Systems , 2013 .

[2]  Ottorino Ori,et al.  A topological study of the structure of the C76 fullerene , 1992 .

[3]  Ante Graovac,et al.  Topological efficiency of C66 fullerene , 2011 .

[4]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[5]  Ali Reza Ashrafi,et al.  The modified Wiener index of some graph operations , 2016, Ars Math. Contemp..

[6]  A. Ashrafi,et al.  An Algebraic Modification of Wiener and Hyper–Wiener Indices and Their Calculations for Fullerenes , 2016 .

[7]  Ante Graovac,et al.  Compression ratio of Wiener index in 2-d rectangular and polygonal lattices , 2014, Ars Math. Contemp..

[8]  Ante Graovac,et al.  Topological Ranking of C28 Fullerenes Reactivity , 2009 .

[9]  F. Koorepazan-Moftakhar,et al.  Combination of distance and symmetry in some molecular graphs , 2016, Appl. Math. Comput..

[10]  M. Liebeck,et al.  Representations and Characters of Groups , 1995 .

[11]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[12]  Nina S. Schmuck The Wiener index of a graph , 2010 .

[13]  K. Symmetry Operators of Generalized Wreath Products and Their Applications to Chemical Physics , 2009 .

[14]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[15]  Zdenka Kolar-Begović,et al.  Affine Fullerene C60 in a GS-Quasigroup , 2014, J. Appl. Math..

[16]  Patrick W. Fowler,et al.  FuiGui :A Graphical User Interface for Investigating Conjectures About Fullerenes , 2007 .

[17]  Sandi Klavzar,et al.  Modified Wiener index via canonical metric representation, and some fullerene patches , 2016, Ars Math. Contemp..

[18]  K. Balasubramanian,et al.  The symmetry groups of nonrigid molecules as generalized wreath products and their representations , 1980 .

[19]  James Avery,et al.  Program Fullerene: A software package for constructing and analyzing structures of regular fullerenes , 2013, Journal of computational chemistry.

[20]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[21]  A. Graovac,et al.  Topological Modeling of C 60 H 36 Hydrides , 2010 .

[22]  Ante Graovac,et al.  The Mathematics and Topology of Fullerenes , 2011 .

[23]  S. Fujita Half-Century Journey from Synthetic Organic Chemistry to Mathematical Stereochemistry through Chemoinformatics , 2016 .

[24]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[25]  Alexandru T. Balaban,et al.  Chemical graphs , 1979 .

[26]  Alexandru T. Balaban Enumeration of Isomers , 1992 .