暂无分享,去创建一个
Pablo A. Estévez | Francisco Förster | Guillermo Cabrera-Vives | Juan-Carlos Maureira | Ignacio Reyes | F. Förster | P. Estévez | G. Cabrera-Vives | J. Maureira | I. Reyes
[1] M. Wainwright,et al. Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.
[2] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[3] Santiago,et al. A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.
[4] E. O. Ofek,et al. Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.
[5] J. van Leeuwen,et al. Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.
[6] John Salvatier,et al. Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.
[7] R. C. Wolf,et al. AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.
[8] Stefan Carlsson,et al. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.
[9] Kunihiko Fukushima,et al. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.
[10] F. Förster,et al. THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS , 2016, 1609.03567.
[11] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[12] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[13] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[14] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[15] Pablo A. Estévez,et al. Supernovae detection by using convolutional neural networks , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).
[16] T. Naylor. An optimal extraction algorithm for imaging photometry , 1998 .
[17] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[18] Grgoire Montavon,et al. Neural Networks: Tricks of the Trade , 2012, Lecture Notes in Computer Science.
[19] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[20] Guoqiang Peter Zhang,et al. Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.
[21] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[22] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[23] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[24] Walter A. Siegmund,et al. Design of the Pan‐STARRS telescopes , 2004 .
[25] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[26] The bulletin of mathematical biophysics , 2005, Protoplasma.
[27] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.