Voltage-controlled ferroelastic switching in Pb(Zr0.2Ti0.8)O3 thin films.

We report a voltage controlled reversible creation and annihilation of a-axis oriented ∼10 nm wide ferroelastic nanodomains without a concurrent ferroelectric 180° switching of the surrounding c-domain matrix in archetypal ferroelectric Pb(Zr0.2Ti0.8)O3 thin films by using the piezo-response force microscopy technique. In previous studies, the coupled nature of ferroelectric switching and ferroelastic rotation has made it difficult to differentiate the underlying physics of ferroelastic domain wall movement. Our observation of distinct thresholds for ferroelectric and ferroelastic switching allows us investigate the ferroelastic switching cleanly and demonstrate a new degree of nanoscale control over the ferroelastic domains.

[1]  Nava Setter,et al.  Compliant ferroelastic domains in epitaxial Pb(Zr,Ti)O3 thin films , 2014 .

[2]  P. Gao,et al.  Ferroelastic domain switching dynamics under electrical and mechanical excitations , 2014, Nature Communications.

[3]  R. Waser,et al.  Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains , 2002 .

[4]  M. Alexe,et al.  Increased ferroelastic domain mobility in ferroelectric thin films and its use in nano-patterned capacitors , 2006 .

[5]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[6]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[7]  A. Roytburd Thermodynamics of polydomain heterostructures. II. Effect of microstresses , 1998 .

[8]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[9]  I. Takeuchi,et al.  Labile Ferroelastic Nanodomains in Bilayered Ferroelectric Thin Films , 2009 .

[10]  A. Damodaran,et al.  Effect of 90° domain walls on the low-field permittivity of PbZr(0.2)Ti(0.8)O3 thin films. , 2012, Physical review letters.

[11]  Marin Alexe,et al.  Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.

[12]  V. Nagarajan,et al.  Finite element modeling of piezoresponse in nanostructured ferroelectric films , 2004 .

[13]  J. Ouyang,et al.  Engineering of Self‐Assembled Domain Architectures with Ultra‐high Piezoelectric Response in Epitaxial Ferroelectric Films , 2007 .

[14]  M. Frank,et al.  Domain dynamics in epitaxial Pb(Zr0.2Ti0.8)O3 films studied by piezoelectric force microscopy , 2010 .

[15]  J. Ouyang,et al.  Effect of 90° domain movement on the piezoelectric response of patterned PbZr0.2Ti0.8O3∕SrTiO3∕Si heterostructures , 2005 .

[16]  A. Tagantsev,et al.  Free-electron gas at charged domain walls in insulating BaTiO3 , 2013, Nature Communications.

[17]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[18]  A. L. Roitburd,et al.  Equilibrium structure of epitaxial layers , 1976 .

[19]  Chang-Beom Eom,et al.  Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching , 2013, Nature Communications.

[20]  D. Chu,et al.  Unexpected controllable pair-structure in ferroelectric nanodomains. , 2011, Nano letters.

[21]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[22]  W. Li,et al.  Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls , 2007 .

[23]  Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. , 2007, Physical review letters.

[24]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[25]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature Materials.

[26]  D. Chu,et al.  90° domain dynamics and relaxation in thin ferroelectric/ferroelastic films , 2010 .

[27]  A. Gruverman,et al.  Mesoscale flux-closure domain formation in single-crystal , 2011, Nature communications.

[28]  Matthew J. Davis,et al.  Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics , 2007, cond-mat/0703121.

[29]  Andrew M Rappe,et al.  Ferroelectric polarization reversal via successive ferroelastic transitions. , 2015, Nature materials.

[30]  E. Salje,et al.  Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films , 2012 .

[31]  S. Venkatesan,et al.  Smallest 90° domains in epitaxial ferroelectric films , 2007, 0706.2487.

[32]  Sergei V. Kalinin,et al.  Deterministic control of ferroelastic switching in multiferroic materials. , 2009, Nature nanotechnology.

[33]  A. Tagantsev,et al.  Controlled stripes of ultrafine ferroelectric domains , 2014, Nature Communications.

[34]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[35]  K. Ashraf,et al.  Phase field model of domain dynamics in micron scale, ultrathin ferroelectric films: Application for multiferroic bismuth ferrite , 2012 .

[36]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[37]  D. Chu,et al.  Flux closure vortexlike domain structures in ferroelectric thin films. , 2010, Physical review letters.

[38]  Z. Suo,et al.  Elastic energy release due to domain formation in the strained epitaxy of ferroelectric and ferroelastic films , 1993 .

[39]  A. Gruverman,et al.  Exploring vertex interactions in ferroelectric flux-closure domains. , 2014, Nano letters.

[40]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[41]  Long-Qing Chen,et al.  Direct observation of asymmetric domain wall motion in a ferroelectric capacitor , 2013 .

[42]  D. M. Evans,et al.  Manipulating ferroelectric domains in nanostructures under electron beams. , 2013, Physical review letters.