High field superconducting properties of Ba(Fe1−xCox)2As2 thin films

[1]  T. Nabeshima,et al.  The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response , 2014, Scientific Reports.

[2]  D. Larbalestier,et al.  Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2 , 2014, Scientific Reports.

[3]  H. Hosono,et al.  Thin film growth of Fe-based superconductors: from fundamental properties to functional devices. A comparative review , 2014, Reports on progress in physics. Physical Society.

[4]  T. Kamiya,et al.  High critical-current density with less anisotropy in BaFe2(As,P)2 epitaxial thin films: Effect of intentionally grown c-axis vortex-pinning centers , 2014, 1403.1947.

[5]  L. Schultz,et al.  Strain induced superconductivity in the parent compound BaFe2As2 , 2013, Nature Communications.

[6]  W. Kwok,et al.  Huge critical current density and tailored superconducting anisotropy in SmFeAsO0.8F0.15 by low-density columnar-defect incorporation , 2013, Nature Communications.

[7]  K. Tanabe,et al.  Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles , 2013, Nature Communications.

[8]  Nicholas J. Long,et al.  Maximum Entropy Distributions Describing Critical Currents in Superconductors , 2013, Entropy.

[9]  C. M. Folkman,et al.  Artificially engineered superlattices of pnictide superconductors. , 2013, Nature materials.

[10]  Sudesh,et al.  Effect of Sb and Si doping on the superconducting properties of FeSe0.9 , 2013 .

[11]  L. Schultz,et al.  Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured Co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes , 2012 .

[12]  B. Büchner,et al.  Evidence for a vortex–glass transition in superconducting Ba(Fe0.9Co0.1)2As2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  R. Prozorov,et al.  Anisotropy of strong pinning in multi-band superconductors , 2012, 1205.1741.

[14]  D. Larbalestier,et al.  High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. , 2012, Nature materials.

[15]  K. Togano,et al.  Fabrication and transport properties of ex situ powder-in-tube (PIT) processed (Ba,K)Fe2As2 superconducting wires , 2012 .

[16]  S. Dou,et al.  Flux pinning and vortex transitions in doped BaFe2As2 single crystals , 2012 .

[17]  Y. Kwon,et al.  Thermally activated flux flow and fluctuation conductivity in LiFeAs single crystal , 2012 .

[18]  L. Schultz,et al.  The influence of the buffer layer architecture on transport properties for BaFe1.8Co0.2As2 films on technical substrates , 2012, 1202.1445.

[19]  D. Christen,et al.  Anisotropy of the Irreversibility Field for Zr-doped (Y,Gd)Ba2 Cu3 O Thin Films up to 45 T , 2012, 1201.1020.

[20]  L. Schultz,et al.  Thickness dependence of structural and transport properties of Co-doped BaFe2As2 on Fe buffered MgO substrates , 2011, 1111.3918.

[21]  M. Abdel-Hafiez,et al.  Specific heat and upper critical fields in KFe2As2 single crystals , 2011, 1110.6357.

[22]  A. Gurevich Iron-based superconductors at high magnetic fields , 2011 .

[23]  F. Balakirev,et al.  Significant enhancement of upper critical fields by doping and strain in iron-based superconductors , 2011, 1108.5194.

[24]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[25]  H. Hiramatsu,et al.  Liquid vortex phase and strong c-axis pinning in low anisotropy BaCoxFe2 − xAs2 pnictide films , 2011 .

[26]  K. Tanabe,et al.  Biaxially textured cobalt-doped BaFe2As2 films with high critical current density over 1 MA/cm2 on MgO-buffered metal-tape flexible substrates , 2011, 1103.5815.

[27]  V. Ganesan,et al.  Magneto-transport studies of FeSe0.9 − xMx (M = Si, Sb) , 2011 .

[28]  L. Schultz,et al.  $J_{\rm c}$ Scaling and Anisotropies in Co-Doped Ba-122 Thin Films , 2010, IEEE Transactions on Applied Superconductivity.

[29]  L. Schultz,et al.  Epitaxial Growth of Superconducting Ba(Fe1-xCox)2As2 Thin Films on Technical Ion Beam Assisted Deposition MgO Substrates , 2010, 1012.0894.

[30]  K. Tanabe,et al.  Advantageous grain boundaries in iron pnictide superconductors , 2010, Nature communications.

[31]  A. Gurevich Upper critical field and the Fulde-Ferrel-Larkin-Ovchinnikov transition in multiband superconductors , 2010 .

[32]  T. Kamiya,et al.  High Critical Current Density 4 MA/cm2 in Co-Doped BaFe2As2 Epitaxial Films Grown on (La,Sr)(Al,Ta)O3 Substrates without Buffer Layers , 2010, 1005.2023.

[33]  L. Schultz,et al.  Critical current scaling and anisotropy in oxypnictide superconductors. , 2010, Physical review letters.

[34]  Ho Won Jang,et al.  Strong vortex pinning in Co-doped BaFe2As2 single crystal thin films , 2010, 1003.0132.

[35]  L. Schultz,et al.  Scaling behaviour of the critical current in clean epitaxial Ba(Fe1-xCox)2As2 thin films , 2010, 1001.2505.

[36]  M. Eisterer,et al.  Thickness dependence of the critical current density in superconducting films: A geometrical approach , 2010, 1001.1056.

[37]  V. Kogan,et al.  Pair breaking in iron pnictides , 2009, 0910.4728.

[38]  D. Larbalestier,et al.  New Fe-based superconductors: properties relevant for applications , 2009, 0910.1297.

[39]  Ho Won Jang,et al.  Template engineering of Co-doped BaFe2As2 single-crystal thin films. , 2009, Nature materials.

[40]  T. Kamiya,et al.  Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2 , 2009, 0907.0666.

[41]  D. Graf,et al.  Anisotropy of the upper critical field in a Co-doped BaFe2As2 single crystal , 2009, 0904.1418.

[42]  H. Hosono,et al.  Pseudoisotropic upper critical field in cobalt-doped SrFe2As2 epitaxial films. , 2008, Physical review letters.

[43]  V. Braccini,et al.  Magnetic field dependence of vortex activation energy: A comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors , 2008, 0803.2078.

[44]  R. Langford,et al.  Focused ion beams techniques for nanomaterials characterization , 2006, Microscopy research and technique.

[45]  H. R. Kerchner,et al.  Vortex pinning and slow creep in high-Jc MgB2 thin films: a magnetic and transport study , 2005 .

[46]  Q. Jia,et al.  Understanding High Critical Currents in YBa2Cu3O7 Thin Films and Coated Conductors , 2004 .

[47]  Frank Pobell,et al.  The High Field Project at Dresden/Rossendorf: A Pulsed 100 T/10 ms Laboratory at an Infrared Free-Electron-Laser Facility , 2003 .

[48]  A. Ghosh,et al.  Angular dependence of the upper critical field in CaAlSi single crystal: Deviation from the Ginzburg-Landau anisotropic mass model , 2003 .

[49]  A. Gurevich,et al.  Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors , 2002, cond-mat/0212129.

[50]  J. H. Rector,et al.  Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films , 1999, Nature.

[51]  T. Koyama,et al.  Angular dependence of the upper critical field in layered superconductors , 1993 .

[52]  Larkin,et al.  From isotropic to anisotropic superconductors: A scaling approach. , 1992, Physical review letters.

[53]  Fox,et al.  Generalized critical-state model for hard superconductors. , 1990, Physical review. B, Condensed matter.

[54]  D. Dew-Hughes Flux pinning mechanisms in type II superconductors , 1974 .

[55]  Edward J. Kramer,et al.  Scaling laws for flux pinning in hard superconductors , 1973 .

[56]  M. Eisterer Vortex pinning and slow creep in high-Jc MgB2 thin films: a magnetic and transport study , 2017 .

[57]  Sanghan Lee Growth and Characterization of Cobalt-doped BaFe2As 2 Epitaxial Thin Films and Superlattices , 2012 .

[58]  D. Christen,et al.  Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning , 2011 .

[59]  V. Selvamanickam,et al.  Angular dependence of Jc for YBCO coated conductors at low temperature and very high magnetic fields , 2009 .

[60]  Robert Kratz,et al.  The Dresden high-magnetic "eld laboratory } overview and "rst results , 2001 .

[61]  村上 雅人 Melt processed high-temperature superconductors , 1992 .