Vector-valued image regularization with PDE's: a common framework for different applications

We address the problem of vector-valued image regularization with variational methods and PDEs. From the study of existing formalisms, we propose a unifying framework based on a very local interpretation of the regularization processes. The resulting equations are then specialized into new regularization PDEs and corresponding numerical schemes that respect the local geometry of vector-valued images. They are finally applied on a wide variety of image processing problems, including color image restoration, in-painting, magnification and flow visualization.

[1]  M. Nikolova Image restoration by minimizing objective functions with nonsmooth data-fidelity terms , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[2]  Guillermo Sapiro,et al.  Vector probability diffusion , 2001, IEEE Signal Processing Letters.

[3]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[4]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[5]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[6]  Luis Alvarez,et al.  Sur quelques schémas numériques de résolution d'équations aux dérivées partielles pour le traitement d'images , 1997 .

[7]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[8]  Leonard M. Silverman,et al.  Nonlinear Restoration of Noisy Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[10]  Rachid Deriche,et al.  Nonlinear operators in image restoration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[12]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[13]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[14]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[15]  B. Vemuri,et al.  Fiber tract mapping from diffusion tensor MRI , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[16]  D. Tschumperlé PDE's based regularization of multivalued images and applications , 2002 .

[17]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[19]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[20]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[21]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[23]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[24]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[25]  Rachid Deriche,et al.  CONSTRAINED AND UNCONSTRAINED PDE'S FOR VECTOR IMAGE RESTO RATION , 2001 .

[26]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[28]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[29]  Rachid Deriche,et al.  Regularization, Scale-Space, and Edge Detection Filters , 1996, ECCV.

[30]  Danny Barash,et al.  Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint , 2001, Scale-Space.

[31]  Rachid Deriche,et al.  Diffusion PDEs on vector-valued images , 2002, IEEE Signal Process. Mag..

[32]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[33]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[34]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[35]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[36]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[37]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[38]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[39]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Guillermo Sapiro,et al.  Direction diffusion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  Martin Rumpf,et al.  Transport and anisotropic diffusion in time-dependent flow visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[42]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[43]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[44]  DiewaldUdo,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000 .

[45]  Martin Rumpf,et al.  PDE methods in flow simulation post processing , 2000 .

[46]  Alfred M. Bruckstein,et al.  Diffusions and Confusions in Signal and Image Processing , 2001, Journal of Mathematical Imaging and Vision.

[47]  R. Deriche,et al.  Regularization of orthonormal vector sets using coupled PDE's , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[48]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[49]  Joyant Shah,et al.  Curve evolution and segmentation functionals: application to color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[50]  Pierre Kornprobst Contribution a la restauration d'images et a l'analyse de sequences : approches variationnelles et solutions de viscosite , 1998 .

[51]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..