Evaluation of EO-1 hyperion data for agricultural applications
暂无分享,去创建一个
[1] Tim R. McVicar,et al. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..
[2] K. Itten,et al. Spectrodirectional remote sensing for the improved estimation of biophysical and -chemical variables: two case studies , 2005 .
[3] M. Ashton,et al. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .
[4] N. Goel,et al. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .
[5] Ruiliang Pu,et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..
[6] N. Broge,et al. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .
[7] Robert O. Green,et al. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..
[8] Zheng Qu,et al. HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..
[9] Pablo J. Zarco-Tejada,et al. Temporal and Spatial Relationships between within-field Yield variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery , 2005 .
[10] John Shepanski,et al. Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..
[11] G. A. Blackburn,et al. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .
[12] Kenneth A. Sudduth,et al. ESTIMATING WITHIN-FIELD VARIATIONS IN SOIL PROPERTIES FROM AIRBORNE HYPERSPECTRAL IMAGES , 2002 .
[13] M. Ashton,et al. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .
[14] Xiang Gao,et al. Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..
[15] Armando Apan,et al. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .
[16] A F Goetz,et al. Imaging Spectrometry for Earth Remote Sensing , 1985, Science.
[17] R. Colombo,et al. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations , 2004 .
[18] Geomatics Canada,et al. Fundamentals of Remote Sensing , 2001 .
[19] John R. Miller,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .
[20] A. Formaggio,et al. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data , 2005 .
[21] John A. Richards,et al. Remote Sensing Digital Image Analysis: An Introduction , 1999 .
[22] K. R. Reddy,et al. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. , 2002, Journal of environmental quality.
[23] P. Gong,et al. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .
[24] Zheng Qu,et al. The High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) model , 2003, IEEE Trans. Geosci. Remote. Sens..
[25] Heather McNairn,et al. Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies , 2003 .