La rééducation du membre supérieur assistée par robot contribue-t-elle à améliorer le pronostic de l’hémiparésie vasculaire ?

Resume Introduction La reeducation du membre superieur assistee par un dispositif robotise est une option innovante de traitement physique des deficiences motrices, d’origine plus particulierement neurologique. Depuis une dizaine d’annees, cette strategie de reeducation utilisant des outils technologiques a ete evaluee sur des patients hemiparetiques, principalement apres un accident vasculaire cerebral (AVC). Etat des connaissances Les resultats d’etudes en phases aigue et chronique de l’AVC suggerent une bonne tolerance et une reduction significative et persistante des deficiences motrices ; le benefice fonctionnel est montre uniquement en phase aigue/subaigue. Perspectives Un meilleur acces aux robots de reeducation et leur utilisation optimale seront probablement associes a une meilleure efficience du travail reeducatif au membre superieur paretique. Conclusions Si ce traitement est encore confine a un cercle restreint d’utilisateurs, les proprietes biomecaniques des dispositifs utilises et certaines indications cliniques suggerees par la litterature en font une technique de reeducation prometteuse.

[1]  D. Reisman,et al.  Observation of amounts of movement practice provided during stroke rehabilitation. , 2009, Archives of physical medicine and rehabilitation.

[2]  J. Fung,et al.  Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. , 2012, Journal of rehabilitation research and development.

[3]  N. Hogan,et al.  Robotic therapy for chronic motor impairments after stroke: Follow-up results. , 2004, Archives of physical medicine and rehabilitation.

[4]  Neville Hogan,et al.  Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients With Chronic Stroke , 2008, Neurorehabilitation and neural repair.

[5]  S. Masiero,et al.  Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. , 2011, Journal of rehabilitation research and development.

[6]  T. Platz,et al.  Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. , 2015, The Cochrane database of systematic reviews.

[7]  S. Semans The Bobath concept in treatment of neurological disorders; a neuro-developmental treatment. , 1967, American journal of physical medicine.

[8]  N. Hogan,et al.  A novel approach to stroke rehabilitation , 2000, Neurology.

[9]  Rajesh Verma,et al.  Estimating the Minimal Clinically Important Difference of an Upper Extremity Recovery Measure in Subacute Stroke Patients , 2011, Topics in stroke rehabilitation.

[10]  K. Mauritz,et al.  Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand , 1995, Journal of the Neurological Sciences.

[11]  Grant D. Huang,et al.  Robot-assisted therapy for long-term upper-limb impairment after stroke. , 2010, The New England journal of medicine.

[12]  Peter Langhorne,et al.  Effects of Augmented Exercise Therapy Time After Stroke: A Meta-Analysis , 2004, Stroke.

[13]  W. Rymer,et al.  Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? , 2006, Journal of rehabilitation research and development.

[14]  Hermano I Krebs,et al.  Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus , 2004, Journal of NeuroEngineering and Rehabilitation.

[15]  Scott M Lewis,et al.  Comparison of Finger Tracking Versus Simple Movement Training via Telerehabilitation to Alter Hand Function and Cortical Reorganization After Stroke , 2007, Neurorehabilitation and neural repair.

[16]  Vincent S. Huang,et al.  Robotic neurorehabilitation: a computational motor learning perspective , 2009, Journal of NeuroEngineering and Rehabilitation.

[17]  J. Kleim,et al.  Motor Learning-Dependent Synaptogenesis Is Localized to Functionally Reorganized Motor Cortex , 2002, Neurobiology of Learning and Memory.

[18]  N. Hogan,et al.  The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. , 1997, Archives of neurology.

[19]  Margaret A. Finley,et al.  Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. , 2005, Journal of rehabilitation research and development.

[20]  Steven C Cramer,et al.  Robotics, motor learning, and neurologic recovery. , 2004, Annual review of biomedical engineering.

[21]  N. Hogan,et al.  Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke , 2003, Neurology.

[22]  R. Nudo Postinfarct Cortical Plasticity and Behavioral Recovery , 2007, Stroke.

[23]  Maarten J. IJzerman,et al.  Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. , 2006, Journal of rehabilitation research and development.

[24]  E. Taub,et al.  The reliability of the wolf motor function test for assessing upper extremity function after stroke. , 2001, Archives of physical medicine and rehabilitation.

[25]  C. Burgar,et al.  Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. , 2002, Archives of physical medicine and rehabilitation.

[26]  C. Burgar,et al.  Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. , 2011, Journal of rehabilitation research and development.

[27]  Grant D. Huang,et al.  An Economic Analysis of Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke , 2011, Stroke.

[28]  Rong Song,et al.  Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training. , 2007, Archives of physical medicine and rehabilitation.

[29]  W. Rymer,et al.  Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study , 2006, Journal of NeuroEngineering and Rehabilitation.

[30]  J. Patton,et al.  Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors , 2005, Experimental Brain Research.

[31]  T. Platz,et al.  Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. , 2008, The Cochrane database of systematic reviews.

[32]  Neville Hogan,et al.  Robotic upper-limb neurorehabilitation in chronic stroke patients. , 2005, Journal of rehabilitation research and development.

[33]  Vicky Chan,et al.  Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? experimental evidence and a computational model , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[34]  Donald Hedeker,et al.  Error Augmentation Enhancing Arm Recovery in Individuals With Chronic Stroke , 2014, Neurorehabilitation and neural repair.

[35]  Sheng Quan Xie,et al.  Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. , 2012, Medical engineering & physics.

[36]  T. Hsia,et al.  A literature review: robots in medicine , 1991, IEEE Engineering in Medicine and Biology Magazine.

[37]  Maarten J. IJzerman,et al.  Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients , 2009, Neurorehabilitation and neural repair.

[38]  D. Reinkensmeyer,et al.  Review of control strategies for robotic movement training after neurologic injury , 2009, Journal of NeuroEngineering and Rehabilitation.

[39]  Hermano I Krebs,et al.  Robotic Measurement of Arm Movements After Stroke Establishes Biomarkers of Motor Recovery , 2014, Stroke.

[40]  D.J. Reinkensmeyer,et al.  Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[41]  E. Hamrin,et al.  Evaluation of functional capacity after stroke as a basis for active intervention. Validation of a modified chart for motor capacity assessment. , 1988, Scandinavian journal of rehabilitation medicine.

[42]  C. Granger,et al.  The functional independence measure: a new tool for rehabilitation. , 1987, Advances in clinical rehabilitation.

[43]  Margaret A. Finley,et al.  Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. , 2011, Archives of physical medicine and rehabilitation.

[44]  H.I. Krebs,et al.  Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[45]  S. Micera,et al.  On the use of divergent force fields in robot-mediated neurorehabilitation , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[46]  H. Krebs,et al.  Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review , 2008, Neurorehabilitation and neural repair.

[47]  R. Nudo,et al.  Effects of Repetitive Motor Training on Movement Representations in Adult Squirrel Monkeys: Role of Use versus Learning , 2000, Neurobiology of Learning and Memory.

[48]  S. Masiero,et al.  Robotic-assisted rehabilitation of the upper limb after acute stroke. , 2007, Archives of physical medicine and rehabilitation.

[49]  P. Dario,et al.  Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury. , 2009, Journal of rehabilitation medicine.

[50]  L. Richards,et al.  Comprehensive Overview of Nursing and Interdisciplinary Rehabilitation Care of the Stroke Patient: A Scientific Statement From the American Heart Association , 2010, Stroke.

[51]  N. Hogan,et al.  Effects of robotic therapy on motor impairment and recovery in chronic stroke. , 2003, Archives of physical medicine and rehabilitation.

[52]  J. Mehrholz,et al.  Computerized Arm Training Improves the Motor Control of the Severely Affected Arm After Stroke: A Single-Blinded Randomized Trial in Two Centers , 2005, Stroke.

[53]  Robert Riener,et al.  Robot-aided neurorehabilitation of the upper extremities , 2005, Medical and Biological Engineering and Computing.

[54]  Mark Ferraro,et al.  Continuous passive motion improves shoulder joint integrity following stroke , 2005, Clinical rehabilitation.

[55]  Silvestro Micera,et al.  Upper limb spasticity reduction following active training: a robot-mediated study in patients with chronic hemiparesis. , 2010, Journal of rehabilitation medicine.

[56]  C. Burgar,et al.  MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. , 2006, Journal of rehabilitation research and development.

[57]  S. Page,et al.  Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People With Minimal to Moderate Impairment Due to Chronic Stroke , 2012, Physical Therapy.

[58]  J. P. Miller,et al.  Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. , 2006, JAMA.

[59]  Valerie M Pomeroy,et al.  The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis , 2010, BMC medicine.