Influence of molecular weight on high- and low-expansion foam injection molding using linear polypropylene

[1]  Patrick C. Lee,et al.  Tuning High and Low Temperature Foaming Behavior of Linear and Long-Chain Branched Polypropylene via Partial and Complete Melting , 2021, Polymers.

[2]  Patrick C. Lee,et al.  Two-Dimensional Correlation Analysis of iPP Bead Foaming Thermal Features Modeled by Fast Scanning Calorimetry. , 2021, ACS Macro Letters.

[3]  Patrick C. Lee,et al.  Improved Cell Morphology and Surface Roughness in High-Temperature Foam Injection Molding Using a Long-Chain Branched Polypropylene , 2021, Polymers.

[4]  Chul B. Park,et al.  Research on cellular morphology and mechanical properties of microcellular injection–molded BCPP and its blends , 2021, The International Journal of Advanced Manufacturing Technology.

[5]  Chul B. Park,et al.  Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam , 2021 .

[6]  S. Tassou,et al.  Review of supercritical CO2 technologies and systems for power generation , 2020, Applied Thermal Engineering.

[7]  C. Schick,et al.  A DSC study of polypropylene chain branching effects on structure formation under rapid cooling and reheating from the amorphous glass , 2020 .

[8]  Eric S. Kim,et al.  Effects of pressure drop rate and CO2 content on the foaming behavior of newly developed high-melt-strength polypropylene in continuous extrusion , 2020 .

[9]  Chul B. Park,et al.  Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers , 2018 .

[10]  Chul B. Park,et al.  High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites , 2017 .

[11]  Zhe Xing,et al.  Supercritical CO2 Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC , 2016, Molecules.

[12]  A. Minato,et al.  Fabrication of High Expansion Microcellular Injection-Molded Polypropylene Foams by Adding Long-Chain Branches , 2016 .

[13]  G. Hu,et al.  Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide , 2016 .

[14]  Wei Liu,et al.  A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach , 2016, Journal of Materials Science.

[15]  Chul B. Park,et al.  A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging , 2015, International journal of molecular sciences.

[16]  J. Schawe Influence of processing conditions on polymer crystallization measured by fast scanning DSC , 2014, Journal of Thermal Analysis and Calorimetry.

[17]  Hui Liu,et al.  Improving foam ability of polypropylene by crosslinking , 2011 .

[18]  Wei Yang,et al.  Structure and Properties of Radiation Cross-Linked Polypropylene Foam , 2011 .

[19]  Chul B. Park,et al.  A batch foaming visualization system with extensional stress-inducing ability , 2011 .

[20]  Jin Kuk Kim,et al.  Microcellular Structure of PP/Waste Rubber Powder Blends with Supercritical CO2 by Foam Extrusion Process , 2009 .

[21]  J. Takagi,et al.  Nanoscale Cellular Foams from a Poly(propylene)-Rubber Blend , 2008 .

[22]  J. Yu,et al.  Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming , 2008 .

[23]  Hanxiong Huang,et al.  Improving of Cell Structure of Microcellular Foams Based on Polypropylene/High-density Polyethylene Blends , 2008 .

[24]  M. Frounchi,et al.  Polypropylene Foaming in a Reactive Process , 2007 .

[25]  Chul B. Park,et al.  Effect of molecular weight on the surface tension of polystyrene melt in supercritical nitrogen , 2007 .

[26]  H. Münstedt,et al.  Rheological properties and foaming behavior of polypropylenes with different molecular structures , 2006 .

[27]  H. Münstedt,et al.  Effect of Long-chain Branching on the Foaming of Polypropylene with Azodicarbonamide , 2006 .

[28]  M. Ohshima,et al.  Bubble coalescence in foaming process of polymers , 2006 .

[29]  Jae Wook Lee,et al.  Effect of long‐chain branches of polypropylene on rheological properties and foam‐extrusion performances , 2005 .

[30]  C. Macosko,et al.  Strain hardening in polypropylenes and its role in extrusion foaming , 2004 .

[31]  A. Gotsis,et al.  Effect of long branches on the rheology of polypropylene , 2004 .

[32]  Chul B. Park,et al.  Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams , 2004 .

[33]  K. Suh,et al.  Lightweight Cellular Plastics , 2000 .

[34]  A. Luciani,et al.  Rheology of polypropylene , 1999 .

[35]  Chul B. Park,et al.  Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends , 1998 .

[36]  Chul B. Park,et al.  A study of cell nucleation in the extrusion of polypropylene foams , 1997 .

[37]  R. Leaversuch Enhanced PP resins offer a wide balance of properties , 1996 .

[38]  M. Gahleitner,et al.  Correlation between molecular structure and rheological behaviour of polypropylene , 1992 .

[39]  C. Tzoganakis,et al.  Effect of molecular weight distribution on the rheological and mechanical properties of polypropylene , 1989 .

[40]  Li-Fang Wang,et al.  Properties of polypropylene structural foam crosslinked by vinyltrimethoxy silane , 1986 .

[41]  P. Hornsby,et al.  Spherulitic morphology in polypropylene structural foam mouldings , 1984 .

[42]  D. R. Gee,et al.  Thermal properties of melt and solution crystallized isotactic polypropylene , 1970 .