Metabolism of methanogens

Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceeded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.

[1]  L. Daniels,et al.  Aerobic purification of N5,N10-methylenetetrahydromethanopterin dehydrogenase, separated from N5,N10-methylenetetrahydromethanopterin cyclohydrolase, from Methanobacterium thermoautotrophicum strain Marburg. , 1989, Canadian journal of microbiology.

[2]  S. Albracht,et al.  Redox behaviour of nickel in hydrogenase from Methanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity , 1989 .

[3]  P. Schönheit,et al.  ATP synthesis driven by a potassium diffusion potential in Methanobacterium thermoautotrophicum is stimulated by sodium , 1983 .

[4]  D. Boone,et al.  Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. , 1991, International journal of systematic bacteriology.

[5]  G. Gottschalk,et al.  H2: heterodisulfide oxidoreductase, a second energy-conserving system in the methanogenic strain Gö1 , 1991, Archives of Microbiology.

[6]  J. B. Jones,et al.  Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. , 1981, The Journal of biological chemistry.

[7]  G. Gottschalk,et al.  Characterization of the cytochromes occurring in Methanosarcina species. , 1983, European journal of biochemistry.

[8]  C. Walsh,et al.  8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. , 1987, Biochemistry.

[9]  G. Schäfer,et al.  F-type or V-type? The chimeric nature of the archaebacterial ATP synthase. , 1992, Biochimica et biophysica acta.

[10]  O. Kandler,et al.  Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria , 1978, Archives of Microbiology.

[11]  S. F. Baron,et al.  Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum , 1989, Journal of bacteriology.

[12]  L. Daniels,et al.  The bioenergetics of methanogenesis. , 1984, Biochimica et biophysica acta.

[13]  J. Konisky,et al.  Energy transduction in the methanogen Methanococcus voltae is based on a sodium current , 1992, Journal of bacteriology.

[14]  R. Thauer,et al.  N5, N10-Methylenetetrahydromethanopterin reductase from Methanosarcina barkeri , 1990 .

[15]  Jiann-Shin Chen,et al.  Two hydrogenases with distinct electrn-carrier specificity and subunit composition in Methanobacterium formicicum , 1983 .

[16]  C. Walsh,et al.  A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Gottschalk,et al.  Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. , 1992, European journal of biochemistry.

[18]  Y. Kamagata,et al.  Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila , 1993, Journal of bacteriology.

[19]  C. Walsh Naturally occurring 5-deazaflavin coenzymes: biological redox roles , 1986 .

[20]  A. Klein,et al.  Physical mapping of genes coding for two subunits of methyl CoM reductase component C of Methanococcus voltae , 1984, Molecular and General Genetics MGG.

[21]  G. Gottschalk,et al.  Energetics of methanogenesis studied in vesicular systems , 1992, Journal of bioenergetics and biomembranes.

[22]  G. Vogels,et al.  Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. , 1991, Biochimica et biophysica acta.

[23]  D. Lovley,et al.  Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp , 1984, Journal of bacteriology.

[24]  K. Rinehart,et al.  Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[25]  W B Whitman,et al.  Pathway of acetate assimilation in autotrophic and heterotrophic methanococci , 1987, Journal of bacteriology.

[26]  R. Thauer,et al.  N5 ,N10 ‐Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity , 1990 .

[27]  G. Fox,et al.  Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. , 1988, International journal of systematic bacteriology.

[28]  E. Muth,et al.  Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. , 1987, European journal of biochemistry.

[29]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Ferry,et al.  Methane from acetate , 1992, Journal of bacteriology.

[31]  R. Thauer,et al.  Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. , 1993, European journal of biochemistry.

[32]  I. Ekiel,et al.  Amino acid biosynthesis and sodium-dependent transport in Methanococcus voltae, as revealed by 13C NMR. , 1985, European journal of biochemistry.

[33]  G. Gottschalk,et al.  The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Gö1 that contains components of the methylreductase system , 1988, Journal of bacteriology.

[34]  L. Daniels,et al.  One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells , 1978, Journal of bacteriology.

[35]  J. Zeikus,et al.  Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri , 1984, Journal of bacteriology.

[36]  G. Gottschalk,et al.  Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Gö1 , 1992, Archives of Microbiology.

[37]  J. Reeve,et al.  Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii , 1990, Journal of bacteriology.

[38]  S. Ragsdale,et al.  Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. , 1993, The Journal of biological chemistry.

[39]  R. Mah,et al.  Acetate as Sole Carbon and Energy Source for Growth of Methanosarcina Strain 227 , 1980, Applied and environmental microbiology.

[40]  William B. Whitman,et al.  Anabolic Pathways in Methanogens , 1993 .

[41]  R. Thauer,et al.  Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis , 1989 .

[42]  J. Reeve,et al.  Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus , 1988, Journal of bacteriology.

[43]  K. Rinehart,et al.  Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts of Methanobacterium. , 1985, Archives of biochemistry and biophysics.

[44]  J. Ferry,et al.  Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila , 1990, Journal of bacteriology.

[45]  G. Gottschalk,et al.  Presence of a trimethylamine: HS-coenzyme M methyltransferase in Methanosarcina barkeri , 1984, Archives of Microbiology.

[46]  M. Futai,et al.  Dicyclohexylcarbodiimide-binding protein is a subunit of the Methanosarcina barkeri ATPase complex. , 1989, Biochemical and Biophysical Research Communications - BBRC.

[47]  G. Gottschalk,et al.  Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Thauer,et al.  Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum , 1978, Archives of Microbiology.

[49]  H. D. Peck,et al.  Structure-function relationships among the nickel-containing hydrogenases. , 1992, FEMS microbiology reviews.

[50]  M. J. Pine,et al.  Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. , 1956, Journal of Bacteriology.

[51]  R. Thauer,et al.  Formylmethanofuran: Tetrahydromethanopterin formyltransferase from Methanosarcina barkeri Identification of N 5‐formyltetrahydromethanopterin as the product , 1990, FEBS letters.

[52]  J. Ferry,et al.  Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. , 1988, The Journal of biological chemistry.

[53]  A. Stams,et al.  Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii , 1989, Journal of bacteriology.

[54]  R. Thauer,et al.  Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri , 1989, Archives of Microbiology.

[55]  G. Gottschalk,et al.  Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. , 1984, European journal of biochemistry.

[56]  C. Walsh,et al.  Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum delta H. , 1990, Biochemistry.

[57]  T. Bobik,et al.  Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. , 1987, Biochemical and biophysical research communications.

[58]  G. Gottschalk,et al.  Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. Vogels,et al.  ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum , 1978, Journal of bacteriology.

[60]  G. Vogels,et al.  Formation of methylcoenzyme M from formaldehyde by cell‐free extracts of Methanobacterium thermoautotrophicum. Evidence for the involvement of a corrinoid‐containing methyltransferase , 1987 .

[61]  R. Wolfe,et al.  Component C of the methylreductase system of Methanobacterium. , 1981, The Journal of biological chemistry.

[62]  R. Wolfe,et al.  Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum , 1986, Journal of bacteriology.

[63]  G. Vogels,et al.  Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. , 1984, European journal of biochemistry.

[64]  C. Kratky,et al.  Coenzyme F430 from Methanogenic Bacteria: Complete Assignment of Configuration Based on an X‐Ray Analysis of 12,13‐Diepi‐F430 Pentamethyl Ester and on NMR Spectroscopy , 1991 .

[65]  J. Ferry Composition oftheCoenzyme F420-Dependent Formate Dehydrogenase fromMethanobacterium formicicum , 1986 .

[66]  J. Reeve,et al.  Conservation of primary structure in prokaryotic hydrogenases. , 1990, FEMS microbiology reviews.

[67]  A. Berkessel Methyl-coenzyme M reductase: Model studies on pentadentate nickel complexes and a hypothetical mechanism , 1991 .

[68]  R. Thauer,et al.  Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. , 1987, European journal of biochemistry.

[69]  G. Gottschalk,et al.  H2 and CO2 production from methanol or formaldehyde by the methanogenic bacterium strain Gö1 treated with 2-bromoethanesulfonic acid , 1989 .

[70]  K. Inatomi Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri , 1986, Journal of bacteriology.

[71]  Stephen H. Zinder,et al.  Physiological Ecology of Methanogens , 1993 .

[72]  E. Muth,et al.  Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria , 1988, Molecular and General Genetics MGG.

[73]  A. Klein,et al.  Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types , 1992, Molecular and General Genetics MGG.

[74]  A. Stams,et al.  Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. , 1989, European journal of biochemistry.

[75]  R. Thauer,et al.  N5,N10-Methenyltetrahydromethanopterin cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (kcat/KM) and thermostability in the presence of salts , 1991, Archives of Microbiology.

[76]  G. Gottschalk,et al.  N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein , 1992, Journal of bacteriology.

[77]  R. Thauer,et al.  Carbon monoxide production by Methanobacterium thermoautotrophicum , 1983 .

[78]  P. Jablonski,et al.  Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila , 1991, Journal of bacteriology.

[79]  R. Thauer,et al.  Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. , 1993, European journal of biochemistry.

[80]  T. Date,et al.  Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. , 1988, The Journal of biological chemistry.

[81]  R. Thauer,et al.  Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). , 1990, European journal of biochemistry.

[82]  R. Thauer,et al.  Coenzyme F420 dependent N5, N10-methylenetetrahydromethanopterin dehydrogenase in methanol grown Methanosarcina barkeri , 1991, Archives of Microbiology.

[83]  M. Futai,et al.  Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of eukaryotic vacuolar and F0F1-ATPases. , 1989, The Journal of biological chemistry.

[84]  E. J. Bowman,et al.  Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. , 1991, Archives of biochemistry and biophysics.

[85]  R. Thauer,et al.  The L‐form of N‐7‐mercaptoheptanoyl‐O‐phosphothreonine is the enantiomer active as component B in methyl‐CoM reduction to methane , 1987 .

[86]  W. D. de Vos,et al.  Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. , 1991, The Journal of biological chemistry.

[87]  W Guijt,et al.  Derivatives of methanopterin, a coenzyme involved in methanogenesis. , 1984, European journal of biochemistry.

[88]  R. Thauer,et al.  Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. , 1993, European journal of biochemistry.

[89]  J. Zeikus,et al.  Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicum , 1977, Journal of bacteriology.

[90]  J. Ferry,et al.  Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Masasuke Yoshida,et al.  A DNA fragment homologous to F1‐ATPase β subunit was amplified from genomic DNA of Methanosarcina barkeri Indication of an archaebacterial F‐type ATPase , 1992, FEBS letters.

[92]  R. Huber,et al.  Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri , 2004, Archives of Microbiology.

[93]  J. Ferry,et al.  Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum. , 1991, FEMS microbiology letters.

[94]  J. Ferry,et al.  Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. , 1988, The Journal of biological chemistry.

[95]  M. Peck,et al.  Improved assay of coenzyme F 420 analogues from methanogenic bacteria , 1987 .

[96]  G. Gottschalk,et al.  Bioenergetics of Methanogenesis , 1993 .

[97]  J. Ferry,et al.  Metabolism of Formate in Methanobacterium formicicum , 1980, Journal of bacteriology.

[98]  D. Grahame,et al.  Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. , 1987, The Journal of biological chemistry.

[99]  O. Kandler,et al.  Lack of peptidoglycan in the cell walls of Methanosarcina barkeri , 1977, Archives of Microbiology.

[100]  G. Vogels,et al.  Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri , 1984, Journal of bacteriology.

[101]  G. Fuchs,et al.  Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[102]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[103]  R. Mah,et al.  Kinetics of acetate metabolism during sludge digestion. , 1966, Applied microbiology.

[104]  J. Zeikus,et al.  Acetate assimilation pathway of Methanosarcina barkeri , 1979, Journal of bacteriology.

[105]  J. Ferry,et al.  Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. , 1986, The Journal of biological chemistry.

[106]  B. Kaesler,et al.  The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2. , 1989, European journal of biochemistry.

[107]  R. Thauer,et al.  A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. , 1992, European journal of biochemistry.

[108]  G. Vogels,et al.  Methyltransferases involved in methanol conversion by Methanosarcina barkeri , 1983, Archives of Microbiology.

[109]  G. Vogels,et al.  Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain delta H. , 1990, The Journal of biological chemistry.

[110]  D. Grahame Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. , 1991, The Journal of biological chemistry.

[111]  D. Mountfort Evidence from ATP synthesis driven by a proton gradient in Methanosarcina barkeri. , 1978, Biochemical and biophysical research communications.

[112]  G. Vogels,et al.  Proposed structure for coenzyme F420 from Methanobacterium. , 1978, Biochemistry.

[113]  G. Vogels,et al.  Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum. , 1992, Biochimica et biophysica acta.

[114]  K. Fiebig,et al.  Distribution of cytochromes in methanogenic bacteria , 1983 .

[115]  G. Vogels,et al.  Activation and inactivation of methanol: 2-mercaptoethanesulfonic acid methyltransferase from Methanosarcina barkeri , 1983, Journal of bacteriology.

[116]  G. Vogels,et al.  Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri , 1990, Journal of bacteriology.

[117]  R. Thauer,et al.  The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. , 1990, European journal of biochemistry.

[118]  H. Aldrich,et al.  Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum , 1987, Archives of Microbiology.

[119]  R. Wolfe,et al.  Structure and methylation of coenzyme M(HSCH2CH2SO3). , 1974, The Journal of biological chemistry.

[120]  J. Gogarten,et al.  Molecular Evolution of H+-ATPases. I. Methanococcus and Sulfolobus are Monophyletic with Respect to Eukaryotes and Eubacteria , 1989, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[121]  Robert H. White,et al.  Biosynthesis of the Coenzymes in Methanogens , 1993 .

[122]  D. M. Ivey,et al.  Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes , 1987, Journal of bacteriology.

[123]  R. Thauer,et al.  The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). , 1988, European journal of biochemistry.

[124]  J. Ferry,et al.  Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum , 1986, Journal of bacteriology.

[125]  J. Eyzaguirre,et al.  Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum , 1982, Archives of Microbiology.

[126]  S. Ragsdale,et al.  Enzymology of the acetyl-CoA pathway of CO2 fixation. , 1991, Critical reviews in biochemistry and molecular biology.

[127]  G. Fuchs,et al.  Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. , 1987, European journal of biochemistry.

[128]  M. Blaut,et al.  Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol , 1992, Journal of bacteriology.

[129]  R. Thauer,et al.  Ferredoxin‐dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS) , 1990, FEBS letters.

[130]  G. Schäfer,et al.  A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. , 1987, European journal of biochemistry.

[131]  Jean-Louis Garcia Taxonomy and ecology of methanogens , 1990 .

[132]  G. Fuchs,et al.  Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum , 1985, Archives of Microbiology.

[133]  G. Vogels,et al.  Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri , 1983 .

[134]  B. Jaun,et al.  Coenzyme F430 from methanogenic bacteria: methane formation by reductive carbon–sulphur bond cleavage of methyl sulphonium ions catalysed by F430 pentamethyl ester , 1988 .

[135]  R. Thauer,et al.  Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg) , 1991, FEBS letters.

[136]  R. Thauer,et al.  Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin. , 1986, European journal of biochemistry.

[137]  J. Ferry,et al.  Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers. , 1983, The Journal of biological chemistry.

[138]  A. Stams,et al.  Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii , 1990 .

[139]  R. Thauer,et al.  Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. , 1992, European journal of biochemistry.

[140]  W. D. de Vos,et al.  Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli , 1991, Journal of bacteriology.

[141]  D. Grahame,et al.  Redox Enzymes of Methanogens: Physicochemical Properties of Selected, Purified Oxidoreductases , 1993 .

[142]  R. Thauer,et al.  Methylenetetrahydromethanopterin reductase from , 1990 .

[143]  B. Kaesler,et al.  The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. , 1989, European journal of biochemistry.

[144]  R. Thauer,et al.  Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and delta H. , 1990, European journal of biochemistry.

[145]  D. Grahame,et al.  Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii , 1987, Journal of bacteriology.

[146]  G. Fuchs,et al.  Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum , 1978, Archives of Microbiology.

[147]  M. Dilworth,et al.  Aromatic metabolism in Rhizobium trifolii-catechol 1,2-dioxygenase , 1985, Archives of Microbiology.

[148]  R. Wolfe,et al.  The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. , 1986, The Journal of biological chemistry.

[149]  R. Mah,et al.  Acetate as Sole Carbon and Energy Source for Growth of Methanosarcina Strain 227 , 1980, Applied and environmental microbiology.

[150]  W. Whitman,et al.  Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis , 1988, Journal of bacteriology.

[151]  J. Ferry,et al.  Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila , 1986, Journal of bacteriology.

[152]  I. Ekiel,et al.  Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance , 1983, Journal of bacteriology.

[153]  S. Yamazaki A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. , 1982, The Journal of biological chemistry.

[154]  J. Ferry,et al.  Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. , 1989, The Journal of biological chemistry.

[155]  T. Date,et al.  The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its alpha-subunit. , 1988, The Journal of biological chemistry.

[156]  J. Keltjens,et al.  Electron transfer reactions in methanogens , 1986 .

[157]  G. Fuchs,et al.  Tetrahydromethanopterin, a coenzyme involved in autotrophic acetyl coenzyme A synthesis from 2 CO2 in Methanobacterium , 1985 .

[158]  G. Gottschalk,et al.  Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri , 1988, Journal of bacteriology.

[159]  H. König,et al.  Glycogen in Methanolobus and Methanococcus , 1985 .

[160]  K. Fiebig,et al.  Presence of a cytochrome b 559 in Methanosarcina barkeri , 1979, FEBS letters.

[161]  D. Boone,et al.  Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer , 1990 .

[162]  G. Vogels,et al.  Reductive activation of the methyl-tetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum strain ΔH , 1988, Archives of Microbiology.

[163]  B. Jaun,et al.  Coenzyme F430 from Methanogenic Bacteria: Detection of a Paramagnetic Methylnickel(II) Derivative of the Pentamethyl Ester by 2H-NMR Spectroscopy , 1991 .

[164]  K. Fiebig,et al.  Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). , 1989, European journal of biochemistry.

[165]  Y. Mukohata,et al.  The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. , 1991, Archives of biochemistry and biophysics.

[166]  T. Miller,et al.  Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen , 1985, Archives of Microbiology.

[167]  M. Maeda,et al.  Isolation of subunits from Methanosarcina barkeri ATPase: nucleotide-binding site in the alpha subunit , 1988, Journal of bacteriology.

[168]  H. Santos,et al.  Proteins containing the factor F430 from methanosarcina barkeri and methanobacterium thermoautotrophicum , 1983 .

[169]  G. Fuchs CO2 fixation in acetogenic bacteria: Variations on a theme , 1986 .

[170]  J. Konisky,et al.  The formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanobacterium thermoautotrophicum delta H. Nucleotide sequence and functional expression of the cloned gene. , 1990, The Journal of biological chemistry.

[171]  T. E. Thompson,et al.  Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum , 1982, Journal of bacteriology.

[172]  I. Ekiel,et al.  Acetate and CO2 assimilation by Methanothrix concilii , 1985, Journal of bacteriology.

[173]  L. Daniels,et al.  Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus , 1990, Journal of bacteriology.

[174]  R. Thauer,et al.  Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. , 1992, European journal of biochemistry.

[175]  J. Zeikus,et al.  One-Carbon Metabolism in Methanogens: Evidence for Synthesis of a Two-Carbon Cellular Intermediate and Unification of Catabolism and Anabolism in Methanosarcina barkeri , 1982, Journal of bacteriology.

[176]  H. Wood,et al.  Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. , 1981, The Journal of biological chemistry.