Analysis of the size of DNA packaged by the human JC virus-like particle.

[1]  K. Yagi,et al.  Development of a recombinant adenovirus vector production system free of replication-competent adenovirus by utilizing a packaging size limit of the viral genome. , 2011, Virus research.

[2]  Pl Chen,et al.  Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model , 2010, Gene Therapy.

[3]  L. Calabrese,et al.  Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. , 2009, Arthritis and rheumatism.

[4]  W. Bowers,et al.  Herpes Virus Amplicon Vectors , 2009, Viruses.

[5]  J. Grieger,et al.  Packaging Capacity of Adeno-Associated Virus Serotypes: Impact of Larger Genomes on Infectivity and Postentry Steps , 2005, Journal of Virology.

[6]  K. Tyler,et al.  Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. , 2005, The New England journal of medicine.

[7]  S. Atlas,et al.  Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. , 2005, The New England journal of medicine.

[8]  P. Rutgeerts,et al.  Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. , 2005, The New England journal of medicine.

[9]  M. Weitzman,et al.  Gene therapy: twenty-first century medicine. , 2005, Annual review of biochemistry.

[10]  J. Hess,et al.  Efficient Intracellular Delivery of a Protein and a Low Molecular Weight Substance via Recombinant Polyomavirus-like Particles* , 2004, Journal of Biological Chemistry.

[11]  E. Stopa,et al.  Differential distribution of the JC virus receptor-type sialic acid in normal human tissues. , 2004, The American journal of pathology.

[12]  Mark A. Kay,et al.  Progress and problems with the use of viral vectors for gene therapy , 2003, Nature Reviews Genetics.

[13]  L'Hocine Yahia,et al.  Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. , 2003, Biomaterials.

[14]  C. Lii,et al.  Disulfide bonds stabilize JC virus capsid‐like structure by protecting calcium ions from chelation , 2001, FEBS letters.

[15]  Meilin Wang,et al.  Identification of a DNA encapsidation sequence for human polyomavirus pseudovirion formation , 2001, Journal of medical virology.

[16]  Zheng Ma,et al.  Nonviral gene therapy. , 2001, Current gene therapy.

[17]  C. Higgins,et al.  Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids , 2000, Gene Therapy.

[18]  Inder M. Verma,et al.  Gene therapy: trials and tribulations , 2000, Nature Reviews Genetics.

[19]  A. Zimmer,et al.  Enhanced In Vitro Oligonucleotide and Plasmid DNA Transport by VP1 Virus-like Particles , 2000, Pharmaceutical Research.

[20]  Theresa A. Storm,et al.  Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors , 2000, Nature Biotechnology.

[21]  Juan Li,et al.  Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization , 2000, Nature Medicine.

[22]  D. Scherman,et al.  Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. , 1999, Nucleic acids research.

[23]  H. Petry,et al.  Molecular Cloning and Expression of Major Structural Protein VP1 of the Human Polyomavirus JC Virus: Formation of Virus-Like Particles Useful for Immunological and Therapeutic Studies , 1999, Journal of Virology.

[24]  R. Consigli,et al.  Use of the baculovirus system to assemble polyomavirus capsid-like particles with different polyomavirus structural proteins: analysis of the recombinant assembled capsid-like particles. , 1999, The Journal of general virology.

[25]  D. Trono,et al.  Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery , 1998, Journal of Virology.

[26]  R. Rouse,et al.  Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications , 1998, Gene Therapy.

[27]  E. Soeda,et al.  Enhancement by polylysine of transient, but not stable, expression of genes carried into cells by polyoma VP1 pseudocapsids , 1998, Gene Therapy.

[28]  Pieter J. de Jong,et al.  Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy , 1998, Nature Genetics.

[29]  S. Harrison,et al.  Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry , 1998, The EMBO journal.

[30]  T. Hseu,et al.  Genomic cloning and sequence analysis of Taiwan-3 human polyomavirus JC virus. , 1997, Journal of the Formosan Medical Association = Taiwan yi zhi.

[31]  S. Li,et al.  Self-assembly of the JC virus major capsid protein, VP1, expressed in insect cells. , 1997, The Journal of general virology.

[32]  H. Kasamatsu,et al.  Analysis of a nuclear localization signal of simian virus 40 major capsid protein Vp1 , 1996, Journal of virology.

[33]  V. Sandig,et al.  Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. , 1995, Human gene therapy.

[34]  B. Sugden,et al.  Optimal lengths for DNAs encapsidated by Epstein-Barr virus , 1994, Journal of virology.

[35]  A. Nakanishi,et al.  Functional complementation of nuclear targeting-defective mutants of simian virus 40 structural proteins , 1994, Journal of virology.

[36]  F. Graham,et al.  Packaging capacity and stability of human adenovirus type 5 vectors , 1993, Journal of virology.

[37]  R. Consigli,et al.  Characterization of the DNA binding properties of polyomavirus capsid protein , 1993, Journal of virology.

[38]  R. Garcea,et al.  Expression of the polyomavirus VP2 and VP3 proteins in insect cells: coexpression with the major capsid protein VP1 alters VP2/VP3 subcellular localization. , 1993, Virology.

[39]  J. Brady,et al.  Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2. , 1992, Virology.

[40]  D. L. Griffith,et al.  Inside polyomavirus at 25-Å resolution , 1992, Nature.

[41]  R. Liddington,et al.  Structure of simian virus 40 at 3.8-Å resolution , 1991, Nature.

[42]  R. Holman,et al.  Epidemiology of progressive multifocal leukoencephalopathy in the United States , 1991, Neurology.

[43]  L. Tsui,et al.  Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. , 1989, Science.

[44]  D. Pettijohn,et al.  Histone-like proteins and bacterial chromosome structure. , 1988, The Journal of biological chemistry.

[45]  Eric P. Hoffman,et al.  Dystrophin: The protein product of the duchenne muscular dystrophy locus , 1987, Cell.

[46]  X. Chang,et al.  Formation of deletions after initiation of simian virus 40 replication: influence of packaging limit of the capsid , 1986, Journal of virology.

[47]  H. Aposhian,et al.  Gene transfer by polyoma-like particles assembled in a cell-free system. , 1983, Science.

[48]  I. Rayment,et al.  Polyoma virus capsid structure at 22.5 Å resolution , 1982, Nature.

[49]  H. Aposhian,et al.  Cell-free assembly of a polyoma-like particle from empty capsids and DNA. , 1979, Virology.

[50]  M. Yaniv,et al.  E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA , 1979, Cell.

[51]  E. Lattman,et al.  Polyoma virion and capsid crystal structures. , 1979, Science.

[52]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.

[53]  M. Green,et al.  Isolation of a polyoma-nucleoprotein complex from infected mouse-cell cultures. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Hirt Selective extraction of polyoma DNA from infected mouse cell cultures. , 1967, Journal of molecular biology.

[55]  O. Gjoerup,et al.  Update on human polyomaviruses and cancer. , 2010, Advances in cancer research.

[56]  D. Duan,et al.  Dual vector expansion of the recombinant AAV packaging capacity. , 2003, Methods in molecular biology.

[57]  T. Hseu,et al.  The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid-like particle and deliver exogenous DNA into human kidney cells. , 1999, The Journal of general virology.