Photopharmacology: beyond proof of principle.

Pharmacotherapy is often severely hindered by issues related to poor drug selectivity, including side effects, environmental toxicity, and the emergence of resistance. Lack of selectivity is caused by the inability to control drug activity in time and space. Photopharmacology aims at solving this issue by incorporating photoswitchable groups into the molecular structure of bioactive compounds. These switching units allow for the use of light as an external control element for pharmacological activity, which can be delivered with very high spatiotemporal precision. This Perspective presents the reader with the current state and outlook on photopharmacology. In particular, the principles behind photoregulation of bioactivity, the challenges of molecular design, and the possible therapeutic scenarios are discussed.

[1]  J. Winther,et al.  Redox characteristics of the eukaryotic cytosol. , 2008, Biochimica et biophysica acta.

[2]  Bradley D. Smith,et al.  Photoregulation of enzyme activity. Photochromic, transition-state-analog inhibitors of cysteine and serine proteases , 1993 .

[3]  S. Yates,et al.  Analysis of steroid hormones in a typical dairy waste disposal system. , 2008, Environmental science & technology.

[4]  G. Waksman,et al.  The tandem Src homology 2 domain of the Syk kinase: A molecular device that adapts to interphosphotyrosine distances , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Lehár,et al.  Synergistic drug combinations improve therapeutic selectivity , 2009, Nature Biotechnology.

[6]  H. Mukhtar,et al.  Photodynamic therapy in dermatology. , 2000, Journal of the American Academy of Dermatology.

[7]  C. Sawyers The cancer biomarker problem , 2008, Nature.

[8]  B. Erlanger,et al.  Photoregulation of biological activity by photocromic reagents. II. Inhibitors of acetylcholinesterase. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Federico Guillermo Cruz,et al.  Light-Activated Gene Expression , 2000 .

[10]  L. Sheiner,et al.  Understanding the Dose-Effect Relationship , 1981, Clinical pharmacokinetics.

[11]  C. Renner,et al.  Azobenzene as Conformational Switch in Model Peptides , 2006, Chembiochem : a European journal of chemical biology.

[12]  B. Feringa,et al.  Design, synthesis, and inhibitory activity of potent, photoswitchable mast cell activation inhibitors. , 2013, Journal of medicinal chemistry.

[13]  M. Stolte,et al.  Low dose balsalazide (1.5 g twice daily) and mesalazine (0.5 g three times daily) maintained remission of ulcerative colitis but high dose balsalazide (3.0 g twice daily) was superior in preventing relapses , 2001, Gut.

[14]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[15]  W. Stigelman,et al.  Goodman and Gilman's the Pharmacological Basis of Therapeutics , 1986 .

[16]  J. Cox,et al.  Synthesis and structure-activity relationships of disodium cromoglycate and some related compounds. , 1972, Journal of medicinal chemistry.

[17]  R. Standaert,et al.  Abc amino acids: design, synthesis, and properties of new photoelastic amino acids. , 2006, The Journal of organic chemistry.

[18]  A. Lough,et al.  Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. , 2012, Angewandte Chemie.

[19]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[20]  A. Heckel,et al.  Light-controlled tools. , 2012, Angewandte Chemie.

[21]  Mark A. Brown,et al.  Predicting azo dye toxicity , 1993 .

[22]  S. Samanta,et al.  Photoswitching of ortho-substituted azonium ions by red light in whole blood. , 2013, Angewandte Chemie.

[23]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[24]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[25]  W. G. Levine Metabolism of azo dyes: implication for detoxication and activation. , 1991, Drug metabolism reviews.

[26]  Shunzo Yamamoto,et al.  Thermal Cis-to-Trans Isomerization of Substituted Azobenzenes II. Substituent and Solvent Effects , 1976 .

[27]  J. Simon,et al.  A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  N. Nicolaides,et al.  Advances in targeted therapeutic agents , 2010, Expert opinion on drug discovery.

[29]  S. Zbaida The mechanism of microsomal azoreduction: predictions based on electronic aspects of structure-activity relationships. , 1995, Drug metabolism reviews.

[30]  Donald E Mager,et al.  Quantitative structure-pharmacokinetic/pharmacodynamic relationships. , 2006, Advanced drug delivery reviews.

[31]  E. Kosower,et al.  The glutathione status of cells. , 1978, International review of cytology.

[32]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[33]  N. Ilbäck,et al.  The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. , 2013, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[34]  David Kessel,et al.  Photodynamic therapy of cancer: An update , 2011, CA: a cancer journal for clinicians.

[35]  S. Hecht,et al.  o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. , 2012, Journal of the American Chemical Society.

[36]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[37]  V. Tropepe,et al.  Fluorescence imaging of azobenzene photoswitching in vivo. , 2011, Angewandte Chemie.

[38]  CLAUDE C. FRAZIER,et al.  PHOTODYNAMIC THERAPY IN DERMATOLOGY , 1996, International journal of dermatology.

[39]  Douglas D Young,et al.  Photochemical control of biological processes. , 2007, Organic & biomolecular chemistry.

[40]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[41]  Andrew A. Beharry,et al.  Azobenzene photoswitching without ultraviolet light. , 2011, Journal of the American Chemical Society.

[42]  B. König,et al.  Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor. , 2008, Angewandte Chemie.

[43]  D. Seferos,et al.  Robust visible light photoswitching with ortho-thiol substituted azobenzenes. , 2013, Chemical communications.

[44]  T. Gudermann,et al.  Optical control of TRPV1 channels. , 2013, Angewandte Chemie.

[45]  G. Boriani,et al.  Anticancer drugs and cardiotoxicity: Insights and perspectives in the era of targeted therapy. , 2010, Pharmacology & therapeutics.

[46]  Hazel A. Collins,et al.  Two-photon absorption and the design of two-photon dyes. , 2009, Angewandte Chemie.

[47]  B. Erlanger,et al.  Photoregulation of biological activity by photochromic reagents. 3. Photoregulation of bioelectricity by acetylcholine receptor inhibitors. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Raines,et al.  Azo-propofols: photochromic potentiators of GABA(A) receptors. , 2012, Angewandte Chemie.

[49]  Wesley R. Browne,et al.  Molecular Switches: FERINGA:MOL.SWIT.2ED 2VOL O-BK , 2011 .

[50]  Maria M. Reif,et al.  Photomodulation of conformational states. IV. Integrin‐binding RGD‐peptides with (4‐aminomethyl)phenylazobenzoic acid as backbone constituent , 2005, Biopolymers.

[51]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[52]  A. Deiters Principles and Applications of the Photochemical Control of Cellular Processes , 2009, Chembiochem : a European journal of chemical biology.

[53]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[54]  H. Goossens,et al.  Society's failure to protect a precious resource: antibiotics , 2011, The Lancet.

[55]  Dirk Schrijvers,et al.  The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. , 2004, European journal of cancer.

[56]  Dirk Trauner,et al.  Tuning photochromic ion channel blockers. , 2011, ACS chemical neuroscience.

[57]  G. Fischer,et al.  Peptidyl-prolyl cis/trans isomerases and their effectors , 1994 .

[58]  J. Martínez Antibiotics and Antibiotic Resistance Genes in Natural Environments , 2008, Science.

[59]  A. Basbaum,et al.  Molecular mechanisms of nociception , 2001, Nature.

[60]  D. Trauner,et al.  A photochromic agonist of AMPA receptors. , 2012, Angewandte Chemie.

[61]  Y. Mukohata,et al.  Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. , 1977, Biochemical and biophysical research communications.

[62]  A. Abell,et al.  Azobenzene-Containing, Peptidyl α-Ketoesters as Photobiological Switches of α-Chymotrypsin , 2000 .

[63]  C. Renner,et al.  Redox Potential of Azobenzene as an Amino Acid Residue in Peptides , 2007, Chembiochem : a European journal of chemical biology.

[64]  S. Taylor,et al.  CLINICAL APPLICATIONS OF COOMASSIE BLUE , 1959, British heart journal.

[65]  George L. Drusano,et al.  Antimicrobial pharmacodynamics: critical interactions of 'bug and drug' , 2004, Nature Reviews Microbiology.

[66]  E. Kosower,et al.  Glutathione. 13. Mechanism of thiol oxidation by diazenedicarboxylic acid derivatives. , 1976, Journal of the American Chemical Society.

[67]  S. Hirota,et al.  Development of first photoresponsive prodrug of paclitaxel. , 2006, Bioorganic & medicinal chemistry letters.

[68]  Light control of mitochondrial complex I activity by a photoresponsive inhibitor. , 2006, Biochemistry.

[69]  I. Edwards,et al.  Adverse drug reactions: definitions, diagnosis, and management , 2000, The Lancet.

[70]  D. Eiler,et al.  Spacer-based selectivity in the binding of "two-prong" ligands to recombinant human carbonic anhydrase I. , 2005, Biochemistry.

[71]  G. Pilcher,et al.  Enthalpies of formation of cis-azobenzene and trans-azobenzene , 1992 .

[72]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[73]  Alexander Deiters,et al.  Light-controlled synthetic gene circuits. , 2012, Current opinion in chemical biology.

[74]  A. Deiters Light activation as a method of regulating and studying gene expression. , 2009, Current opinion in chemical biology.

[75]  G. Fischer,et al.  Augmented photoswitching modulates immune signaling. , 2009, Nature chemical biology.

[76]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[77]  M. Barbacid,et al.  Corneal innervation and sensitivity to noxious stimuli in trkA knockout mice , 1998, The European journal of neuroscience.

[78]  V. Tropepe,et al.  Photoswitching azo compounds in vivo with red light. , 2013, Journal of the American Chemical Society.

[79]  J. DiMasi,et al.  Trends in Risks Associated With New Drug Development: Success Rates for Investigational Drugs , 2010, Clinical pharmacology and therapeutics.

[80]  A. Deiters,et al.  Recent advances in the photochemical control of protein function. , 2010, Trends in biotechnology.

[81]  M. Perry,et al.  Classical Chemotherapy: Mechanisms, Toxicities and the Therapeutc Window , 2003, Cancer biology & therapy.

[82]  B. Feringa,et al.  Azobenzene photoswitches for Staudinger-Bertozzi ligation. , 2013, Angewandte Chemie.

[83]  R. Liskamp,et al.  A photoswitchable ITAM peptidomimetic: synthesis and real time surface plasmon resonance (SPR) analysis of the effects of cis-trans isomerization on binding. , 2008, Bioorganic & medicinal chemistry.

[84]  Dirk Trauner,et al.  Photochromic blockers of voltage-gated potassium channels. , 2009, Angewandte Chemie.

[85]  C M Allen,et al.  Role of activated oxygen species in photodynamic therapy. , 2000, Methods in enzymology.

[86]  Chuda Chittasupho Multivalent ligand: design principle for targeted therapeutic delivery approach. , 2012, Therapeutic delivery.

[87]  L. Moroder,et al.  Photomodulation of conformational states. Synthesis of cyclic peptides with backbone‐azobenzene moieties , 1999, Journal of peptide science : an official publication of the European Peptide Society.

[88]  David Ogden,et al.  From one-photon to two-photon probes: "caged" compounds, actuators, and photoswitches. , 2013, Angewandte Chemie.

[89]  R. Liskamp,et al.  Switching between low and high affinity for the Syk tandem SH2 domain by irradiation of azobenzene containing ITAM peptidomimetics , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[90]  Paul Baas,et al.  Photodynamic therapy in oncology. , 2006, The oncologist.

[91]  Claudio H. Sibata,et al.  Oncologic photodynamic therapy photosensitizers: a clinical review. , 2010, Photodiagnosis and photodynamic therapy.

[92]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[93]  P. Johnston,et al.  Molecular mechanisms of drug resistance , 2005, The Journal of pathology.

[94]  L. Elting,et al.  Perspectives on cancer therapy‐induced mucosal injury , 2004, Cancer.

[95]  P. Munson,et al.  UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells , 1986, Molecular and cellular biology.

[96]  Ralf Paus,et al.  Pathobiology of chemotherapy-induced hair loss. , 2013, The Lancet. Oncology.

[97]  P. Portoghese,et al.  From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. , 2001, Journal of medicinal chemistry.

[98]  C. Chao,et al.  UV-Induced Apoptosis in Resistant HeLa Cells , 2000, Bioscience reports.

[99]  R. Givens,et al.  Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy , 2012, Chemical reviews.

[100]  U. Meyer Pharmacogenetics and adverse drug reactions , 2000, The Lancet.

[101]  G. Raman,et al.  UV induced bystander signaling leading to apoptosis. , 2005, Cancer letters.

[102]  Dirk Trauner,et al.  Rapid optical control of nociception with an ion channel photoswitch , 2012, Nature Methods.

[103]  Kohji Yamamoto,et al.  Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources. , 2006, Environmental science & technology.

[104]  B. Feringa,et al.  Optical control of antibacterial activity. , 2013, Nature chemistry.

[105]  L. Beck,et al.  Successful treatment of recalcitrant chronic idiopathic urticaria with sulfasalazine. , 2006, Archives of dermatology.

[106]  D. Raines,et al.  p-(4-Azipentyl)propofol: a potent photoreactive general anesthetic derivative of propofol. , 2011, Journal of medicinal chemistry.

[107]  D. Trauner,et al.  Exploring the Pharmacology and Action Spectra of Photochromic Open‐Channel Blockers , 2012, Chembiochem : a European journal of chemical biology.

[108]  J. Plummer,et al.  The influence of drug polarity on the absorption of opioid drugs into CSF and subsequent cephalad migration following lumbar epidural administration: application to morphine and pethidine , 1987, Pain.

[109]  A. Abell,et al.  Improved photocontrol of alpha-chymotrypsin activity: peptidomimetic trifluoromethylketone photoswitch enzyme inhibitors. , 2008, Chemistry.

[110]  Shai Rubin,et al.  Control of the Structure and Functions of Biomaterials by Light , 1996 .

[111]  R. Payne,et al.  Investigation into the P3 binding domain of m-calpain using photoswitchable diazo- and triazene-dipeptide aldehydes: new anticataract agents. , 2007, Journal of Medicinal Chemistry.

[112]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.