Variational and scale mixture representations of non -Gaussian densities for estimation in the Bayesian linear model: Sparse coding, independent component analysis, and minimum entropy segmentation
暂无分享,去创建一个
[1] Yuhai Wu,et al. Statistical Learning Theory , 2021, Technometrics.
[2] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[3] P. Brockwell,et al. Time Series: Theory and Methods , 2013 .
[4] Stephen P. Boyd,et al. Convex Optimization , 2010, IEEE Transactions on Automatic Control.
[5] K. Kreutz-Delgado,et al. Super-Gaussian Mixture Source Model for ICA , 2006, ICA.
[6] Te-Won Lee,et al. Independent Vector Analysis: An Extension of ICA to Multivariate Components , 2006, ICA.
[7] Te-Won Lee,et al. Multivariate Scale Mixture of Gaussians Modeling , 2006, ICA.
[8] Bhaskar D. Rao,et al. Variational EM Algorithms for Non-Gaussian Latent Variable Models , 2005, NIPS.
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] Te-Won Lee,et al. Modeling Nonlinear Dependencies in Natural Images using Mixture of Laplacian Distribution , 2004, NIPS.
[11] Bhaskar D. Rao,et al. Perspectives on Sparse Bayesian Learning , 2003, NIPS.
[12] Matthew J. Beal,et al. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .
[13] Bhaskar D. Rao,et al. Subset selection in noise based on diversity measure minimization , 2003, IEEE Trans. Signal Process..
[14] Terrence J. Sejnowski,et al. Variational Learning of Clusters of Undercomplete Nonsymmetric Independent Components , 2003, J. Mach. Learn. Res..
[15] Joseph F. Murray,et al. Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.
[16] Dinh-Tuan Pham,et al. Mutual information approach to blind separation of stationary sources , 2002, IEEE Trans. Inf. Theory.
[17] Mark A. Girolami,et al. A Variational Method for Learning Sparse and Overcomplete Representations , 2001, Neural Computation.
[18] Bhaskar D. Rao,et al. Backward sequential elimination for sparse vector subset selection , 2001, Signal Process..
[19] Aapo Hyvärinen,et al. Topographic Independent Component Analysis , 2001, Neural Computation.
[20] Catalin Starica,et al. Gaussian and Non-Gaussian Linear Time Series and Random Fields , 2001 .
[21] Jean Pierre Delmas,et al. Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification , 2001, IEEE Trans. Inf. Theory.
[22] Mário A. T. Figueiredo. Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.
[23] Bhaskar D. Rao,et al. FOCUSS-based dictionary learning algorithms , 2000, SPIE Optics + Photonics.
[24] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[25] Terrence J. Sejnowski,et al. ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[26] Christopher M. Bishop,et al. Variational Relevance Vector Machines , 2000, UAI.
[27] J. Borwein,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[28] Terrence J. Sejnowski,et al. Learning Overcomplete Representations , 2000, Neural Computation.
[29] Paolo Tilli,et al. Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..
[30] Christian Jutten,et al. What should we say about the kurtosis? , 1999, IEEE Signal Processing Letters.
[31] Zoubin Ghahramani,et al. Variational Inference for Bayesian Mixtures of Factor Analysers , 1999, NIPS.
[32] B. Rao,et al. Forward sequential algorithms for best basis selection , 1999 .
[33] Bruno A. Olshausen,et al. PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .
[34] David J. C. MacKay,et al. Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.
[35] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[36] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[37] Aapo Hyvärinen,et al. Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.
[38] Hagai Attias,et al. Blind Source Separation and Deconvolution: The Dynamic Component Analysis Algorithm , 1998, Neural Computation.
[39] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[40] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[41] Tilmann Gneiting,et al. Normal scale mixtures and dual probability densities , 1997 .
[42] Andrzej Cichocki,et al. Stability Analysis of Learning Algorithms for Blind Source Separation , 1997, Neural Networks.
[43] S. Amari,et al. Multichannel blind separation and deconvolution of sources with arbitrary distributions , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.
[44] Bhaskar D. Rao,et al. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..
[45] Jean-François Cardoso,et al. Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..
[46] Dinh-Tuan Pham,et al. Blind separation of instantaneous mixture of sources via an independent component analysis , 1996, IEEE Trans. Signal Process..
[47] A. J. Bell,et al. Blind Separation of Event-Related Brain Responses into Independent Components , 1996 .
[48] D. Field,et al. Natural image statistics and efficient coding. , 1996, Network.
[49] Michael I. Jordan,et al. Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..
[50] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[51] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[52] David J. Field,et al. What Is the Goal of Sensory Coding? , 1994, Neural Computation.
[53] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[54] Q. Cheng. On the Unique Representation of Non-Gaussian Linear Processes , 1992 .
[55] Ronald R. Coifman,et al. Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.
[56] Donald Geman,et al. Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[57] Gabriel Popescu,et al. The laplace transform , 1991, Heat Transfer 1.
[58] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[59] M. West. On scale mixtures of normal distributions , 1987 .
[60] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[61] O. Barndorff-Nielsen,et al. Normal Variance-Mean Mixtures and z Distributions , 1982 .
[62] J. Fischer. An algorithm for discrete linearLp approximation , 1982 .
[63] A. Benveniste,et al. Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .
[64] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[65] J. Keilson,et al. MIXTURES OF DISTRIBUTIONS, MOMENT INEQUALITIES AND MEASURES OF EXPONENTIALITY AND NORMALITY' , 1974 .
[66] Robert M. Gray,et al. Information rates of autoregressive processes , 1970, IEEE Trans. Inf. Theory.
[67] E. M. L. Beale,et al. Nonlinear Programming: A Unified Approach. , 1970 .
[68] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[69] Samuel Karlin,et al. Generalized convex inequalities , 1963 .
[70] D. Hubel,et al. Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.
[71] T. Teichmann,et al. Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.
[72] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[73] Yen-Wei Chen,et al. Ensemble learning for independent component analysis , 2006, Pattern Recognit..
[74] Stephen J. Roberts,et al. Variational Mixture of Bayesian Independent Component Analyzers , 2003, Neural Computation.
[75] K. Kreutz-Delgado,et al. A GENERAL FRAMEWORK FOR COMPONENT ESTIMATION , 2003 .
[76] S. Amari,et al. Adaptive blind signal and image processing , 2002 .
[77] George Eastman House,et al. Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .
[78] Bhaskar D. Rao,et al. An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..
[79] Hagai Attias,et al. A Variational Bayesian Framework for Graphical Models , 1999 .
[80] David Haussler,et al. Probabilistic kernel regression models , 1999, AISTATS.
[81] Harri Lappalainen,et al. Ensemble learning for independent component analysis , 1999 .
[82] R. Hecht-Nielsen,et al. Image manifolds , 1998, Electronic Imaging.
[83] Michael I. Jordan,et al. Variational methods for inference and estimation in graphical models , 1997 .
[84] Michael I. Jordan,et al. A Variational Approach to Bayesian Logistic Regression Models and their Extensions , 1997, AISTATS.
[85] M. Hasselmo,et al. Gaussian Processes for Regression , 1995, NIPS.
[86] Horace Barlow,et al. What is the computational goal of the neocortex , 1994 .
[87] Jean-Francois Cardoso,et al. ITERATIVE TECHNIQUES FOR BLIND SOURCE SEPARATION USING ONLY FOURTH-ORDER CUMULANTS , 1992 .
[88] Dinh Tuan Pham,et al. Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .
[89] Pierre Comon,et al. SIGNAL PROCESSING Independent component analysis , A new concept ? * , 1992 .
[90] T. Wiesel,et al. Functional architecture of macaque monkey visual cortex , 1977 .
[91] I. N. Sneddon. The use of integral transforms , 1972 .
[92] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[93] H. M. Finucan. A Note on Kurtosis , 1964 .
[94] E. A. Parent. MIXTURES OF DISTRIBUTIONS , 1962 .
[95] A. Offord. Introduction to the Theory of Fourier Integrals , 1938, Nature.