The influence of deoxygenation on the magnetic and electrical properties of La0.70Ca0.30Mn0.92Cr0.08Oz (2.897⩽z⩽2.9982.897⩽z⩽2.998)

We studied the effects of deoxygenation on the magnetic and electrical properties of La0.70Ca0.30Mn0.92Cr0.08Oz. M(T)M(T) has small variation with a few oxygen vacancies, but changes greatly with more vacancies. ρ(T)ρ(T) shows single peak, double bumps, one bump, and insulator with z decreasing, respectively. We explain them using phase separation model.

[1]  Sun Ji-rong,et al.  Enhancement of Curie Temperature and Magnetoresistance in the Perovskites La2/3Ca1/3Mn1-xSixO3 , 2000 .

[2]  C. Greaves,et al.  Magnetization and resistivity in chromium doped manganites , 1999 .

[3]  S. Malik,et al.  Effect of Zn substitution on para- to ferromagnetic transition temperature in La0.67Ca0.33Mn1−xZnxO3 colossal magnetoresistance materials , 2000 .

[4]  S. Cheong,et al.  Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites , 1999, Nature.

[5]  S. Ogale,et al.  Transport properties, magnetic ordering, and hyperfine interactions in Fe-doped La 0.75 Ca 0.25 MnO 3 : localization-delocalization transition , 1998 .

[6]  Jose H. Garcia,et al.  Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO 3 + δ , 1997 .

[7]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[8]  J. Yakhmi,et al.  Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr , 2000 .

[9]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[10]  J. Goodenough,et al.  Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3 , 1961 .

[11]  L. Hwang,et al.  Ferromagnetic cluster behaviors and magnetoresistance in Ni-doped LaSrMnO3 systems , 1999 .

[12]  Turilli,et al.  Relationship between spin order and transport and magnetotransport properties in La0.67Ca0.33Mn1-xAlxOy compounds. , 1996, Physical review. B, Condensed matter.

[13]  W. Ge,et al.  Current self-oscillation induced by a transverse magnetic field in a doped GaAs/AlAs superlattice , 1999 .

[14]  S. K. Tiwary,et al.  Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La 0.7 Ca 0.3 Mn 1 − x Co x O 3 system , 1997 .

[15]  B. Shen,et al.  Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3 , 1997 .

[16]  P. P. Ong,et al.  The effects of Cu doping on the magnetoresistive behavior of perovskites La0.7Ca0.3MnO3 , 2001 .

[17]  M. Ausloos,et al.  Spin Glass Behaviour and Spin-Dependent Scattering in La0.7Ca0.3Mn0.9Cr0.1O3 Perovskites , 2005 .

[18]  M. Salamon,et al.  The physics of manganites: Structure and transport , 2001 .

[19]  Peng,et al.  Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. , 1995, Physical review. B, Condensed matter.

[20]  J. MacManus‐Driscoll,et al.  Influence of oxygen vacancies on magnetoresistance properties of bulk La0.67Ca0.33MnO3−δ , 1999 .

[21]  Zhong-Ming Wei,et al.  Magnetic and Transport Properties of oxygen-Deficient Perovskite Manganites , 2003 .

[22]  Wu Bai-Mei,et al.  Thermal Conductivity Anomalies Related to the Double-Bump of Resistivity in Nd 0.7 Sr 0.3 Mn 1-x Cr x O 3 , 2005 .