Thermally-driven isotope separation across nanoporous graphene

Abstract Quantum tunneling contributes to the transmission of atoms through nanoporous graphene barriers, even at room temperature. In a temperature gradient, the mass-dependence of tunneling leads to isotope separation, in contrast to the classical transmission case where no separation can occur. Using transition state theory, we show that zero-point and tunneling contributions enrich the isotopes in opposite directions with respect to the temperature gradient. Zero-point energy differences dominate around room temperature.

[1]  G. Schatz Tunnelling in bimolecular collisions , 1987 .

[2]  G. Schatz Quantum Effects in Gas Phase Bimolecular Chemical Reactions , 1988 .

[3]  Narayana R Aluru,et al.  Water Transport through Ultrathin Graphene , 2010 .

[4]  Jinming Cai,et al.  Porous graphenes: two-dimensional polymer synthesis with atomic precision. , 2009, Chemical communications.

[5]  John D. Simon,et al.  Physical chemistry : a molecular approach , 1997 .

[6]  Samuel Glasstone,et al.  The Theory Of Rate Processes , 1941 .

[7]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[8]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[9]  N. Sturchio,et al.  Laser spectroscopic measurement of helium isotope ratios , 2003, physics/0311121.

[10]  B. C. Garrett,et al.  Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions , 1979 .

[11]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[12]  Klaus Müllen,et al.  Porous graphene as an atmospheric nanofilter. , 2010, Small.

[13]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[14]  S. Saxena,et al.  Thermal Diffusion in Isotopic Gas Mixtures and Intermolecular Forces , 1966 .

[15]  Zhen Zhou,et al.  Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. , 2010, Chemical communications.

[16]  Joshua Schrier,et al.  Helium Separation Using Porous Graphene Membranes , 2010 .

[17]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .

[19]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[20]  A. Cho Physics. Helium-3 shortage could put freeze on low-temperature research. , 2009, Science.

[21]  P. Kirch,et al.  Measurement of thermal diffusion and determination of the intermolecular potential of gaseous uranium hexafluoride , 1965 .

[22]  Keith J. Laidler,et al.  Theories Of Chemical Reaction Rates , 1969 .

[23]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[24]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.