Hierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales

[1]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[2]  Henrik Birkedal,et al.  Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. , 2004, Bone.

[3]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[4]  Georg E Fantner,et al.  High-resolution AFM imaging of intact and fractured trabecular bone. , 2004, Bone.

[5]  Ivo W. Rangelow,et al.  NANOJET as a chemical scalpel for accessing the internal 3D-structure of biological cells , 2004 .

[6]  Masanori Kikuchi,et al.  Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen , 2004 .

[7]  H Follet,et al.  The degree of mineralization is a determinant of bone strength: a study on human calcanei. , 2004, Bone.

[8]  F. Cui,et al.  Hydroxyapatite/collagen composite materials formation in simulated body fluid environment , 2004 .

[9]  M. Glimcher,et al.  Size and Shape of Mineralites in Young Bovine Bone Measured by Atomic Force Microscopy , 2003, Calcified Tissue International.

[10]  P. Hansma,et al.  Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy. , 2003, Biochemical and biophysical research communications.

[11]  Axel Ekani-Nkodo,et al.  Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner. , 2003, Biophysical journal.

[12]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[13]  M. Young,et al.  Biglycan knockout mice: New models for musculoskeletal diseases , 2002, Glycoconjugate Journal.

[14]  M. Spector,et al.  The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. , 2002, Biomaterials.

[15]  I. Rangelow,et al.  “NANOJET”: Tool for the nanofabrication , 2001 .

[16]  Paul K. Hansma,et al.  Bone indentation recovery time correlates with bond reforming time , 2001, Nature.

[17]  G. Embery,et al.  Interaction of bone proteoglycans and proteoglycan components with hydroxyapatite. , 2001, Biochimica et biophysica acta.

[18]  M. Glimcher,et al.  Shape and size of isolated bone mineralites measured using atomic force microscopy , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  Peter Zioupos,et al.  Accumulation of in‐vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone , 2001, Journal of microscopy.

[20]  G. Reilly,et al.  The effects of damage and microcracking on the impact strength of bone. , 2000, Journal of biomechanics.

[21]  M. Grynpas,et al.  Relationships between bone protein and mineral in developing porcine long bone and calvaria. , 2000, Bone.

[22]  G. Pharr,et al.  Variations in the individual thick lamellar properties within osteons by nanoindentation. , 1999, Bone.

[23]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[24]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[25]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[26]  W. Ambrosius,et al.  Does microdamage accumulation affect the mechanical properties of bone? , 1998, Journal of biomechanics.

[27]  P Augat,et al.  Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. , 1998, Medical engineering & physics.

[28]  M Raspanti,et al.  Direct visualization of collagen-bound proteoglycans by tapping-mode atomic force microscopy. , 1997, Journal of structural biology.

[29]  S. Weiner,et al.  Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. , 1997, Bone.

[30]  C Milgrom,et al.  Aging and matrix microdamage accumulation in human compact bone. , 1995, Bone.

[31]  R. Pidaparti,et al.  The anisotropy of osteonal bone and its ultrastructural implications. , 1995, Bone.

[32]  D. Barton,et al.  Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  D. Burr,et al.  Contribution of collagen and mineral to the elastic anisotropy of bone , 1994, Calcified Tissue International.

[34]  E. Atkins,et al.  Scanning probe microscopy of intrafibrillar crystallites in calcified collagen , 1994 .

[35]  R. Timpl,et al.  Binding of the proteoglycan decorin to collagen type VI. , 1992, The Journal of biological chemistry.

[36]  D. Heinegård,et al.  Characterization of proteoglycans from the calcified matrix of bovine bone. , 1984, The Biochemical journal.

[37]  H. Kleinman,et al.  Proteoglycans of developing bone. , 1983, The Journal of biological chemistry.

[38]  J. Currey,et al.  The mechanical consequences of variation in the mineral content of bone. , 1969, Journal of biomechanics.

[39]  Steven A. Goldstein,et al.  Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone , 2005, Calcified Tissue International.

[40]  D. Fyhrie,et al.  Collagen-bridged microcrack model for cortical bone tensile strength , 2001 .

[41]  S. Weiner,et al.  Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. , 1994, Connective tissue research.

[42]  E. Wachtel,et al.  The structure of mineralized collagen fibrils. , 1989, Connective tissue research.

[43]  D. Carlström Particle size and chemical composition of the crystallites in bone and synthetic apaptites. , 1955, Biochimica et biophysica acta.