Identifying the stem cell of the intestinal crypt: strategies and pitfalls.

Decades ago, two nonoverlapping crypt stem cell populations were proposed: Leblond's Crypt Base Columnar (CBC) cell and Potten's +4 cell. The identification of CBC markers including Lgr5 has confirmed Leblond's predictions that CBC cells are anatomically distinct, long-lived stem cells that permanently cycle. While Potten originally described +4 cells as proliferative and unusually radiation-sensitive, recent efforts to identify +4 stem cells have focused on the identification of cells that are quiescent and radiation-resistant. Here, we describe commonalities and discrepancies between the individual studies and discuss challenges of marker-based lineage tracing.

[1]  Ossama Tawfik,et al.  BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling , 2004, Nature Genetics.

[2]  C. Potten Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. , 1977, Nature.

[3]  Hans Clevers,et al.  OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. , 2009, Gastroenterology.

[4]  S. Ichinose,et al.  Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell , 2012, Nature Medicine.

[5]  M. Bjerknes,et al.  The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. , 1981, The American journal of anatomy.

[6]  Camilla A. Richmond,et al.  Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells , 2010, Proceedings of the National Academy of Sciences.

[7]  A. Wagers,et al.  Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells , 2008, Proceedings of the National Academy of Sciences.

[8]  油井 史郎 Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell , 2011 .

[9]  J. Heath,et al.  EPITHELIAL CELL MIGRATION IN THE INTESTINE , 1996, Cell biology international.

[10]  Hans Clevers,et al.  The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. , 2002, Cell.

[11]  S. Lightfoot,et al.  Doublecortin and CaM Kinase‐like‐1 and Leucine‐Rich‐Repeat‐Containing G‐Protein‐Coupled Receptor Mark Quiescent and Cycling Intestinal Stem Cells, Respectively , 2009, Stem cells.

[12]  H. Clevers,et al.  Tracking down the stem cells of the intestine: strategies to identify adult stem cells. , 2007, Gastroenterology.

[13]  Leonard I Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[14]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.

[15]  M. Capecchi,et al.  Bmi 1 is expressed in vivo in intestinal stem cells , 2010 .

[16]  Q. Lin,et al.  R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling , 2011, Proceedings of the National Academy of Sciences.

[17]  A. Cairnie,et al.  Cell proliferation studies in the intestinal epithelium of the rat. I. Determination of the kinetic parameters. , 1965, Experimental cell research.

[18]  Philippe Jay,et al.  DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. , 2009, Gastroenterology.

[19]  Hans Clevers,et al.  Coexistence of Quiescent and Active Adult Stem Cells in Mammals , 2010, Science.

[20]  Xi C. He,et al.  Reply to Re-examination of P-PTEN staining patterns in the intestinal crypt , 2005, Nature Genetics.

[21]  M. Bjerknes,et al.  Multipotential stem cells in adult mouse gastric epithelium. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[22]  M. Capecchi,et al.  The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations , 2011, Proceedings of the National Academy of Sciences.

[23]  H. Clevers,et al.  Controlled gene expression in primary Lgr5 organoid cultures , 2011, Nature Methods.

[24]  R. Richardson,et al.  Prominin1 marks intestinal stem cells that are susceptible to neoplastic transformation , 2008, Nature.

[25]  Hans Clevers,et al.  Expression pattern of Wnt signaling components in the adult intestine. , 2005, Gastroenterology.

[26]  H. Clevers,et al.  Wnt signaling in the intestinal epithelium: from endoderm to cancer. , 2005, Genes & development.

[27]  D. Joubert,et al.  Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation , 2011, Nature communications.

[28]  C. Cruciat,et al.  LGR4 and LGR5 are R‐spondin receptors mediating Wnt/β‐catenin and Wnt/PCP signalling , 2011, EMBO reports.

[29]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. , 1974, The American journal of anatomy.

[30]  H Cheng,et al.  Clonal analysis of mouse intestinal epithelial progenitors. , 1999, Gastroenterology.

[31]  Q. Lin,et al.  LGR5 Interacts and Cointernalizes with Wnt Receptors To Modulate Wnt/β-Catenin Signaling , 2012, Molecular and Cellular Biology.

[32]  H. Ruffner,et al.  ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner , 2012, Nature.

[33]  H. Clevers,et al.  The Intestinal Wnt/TCF Signature. , 2007, Gastroenterology.

[34]  M. Loeffler,et al.  The stem cells of small intestinal crypts: where are they? , 2009, Cell proliferation.

[35]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[36]  Hans Clevers,et al.  Lrig1 controls intestinal stem cell homeostasis by negative regulation of ErbB signalling , 2012, Nature Cell Biology.

[37]  J. Epstein,et al.  Interconversion Between Intestinal Stem Cell Populations in Distinct Niches , 2011, Science.

[38]  Leroy Hood,et al.  PTEN-deficient intestinal stem cells initiate intestinal polyposis , 2007, Nature Genetics.

[39]  A. Fürholz,et al.  Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells , 2008, The Journal of comparative neurology.

[40]  Hans Clevers,et al.  Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate , 2009, Cell.

[41]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[42]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[43]  A. Oudenaarden,et al.  Dll1+ secretory progenitor cells revert to stem cells upon crypt damage , 2012, Nature Cell Biology.

[44]  R. Fodde,et al.  Paneth Cells in Intestinal Homeostasis and Tissue Injury , 2012, PloS one.

[45]  Mikael Huss,et al.  Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. , 2010, Developmental cell.

[46]  S. Quake,et al.  Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. , 2012, Gastroenterology.

[47]  M. Brent,et al.  Molecular Properties of Adult Mouse Gastric and Intestinal Epithelial Progenitors in Their Niches* , 2006, Journal of Biological Chemistry.

[48]  Alexander van Oudenaarden,et al.  The Lgr 5 intestinal stem cell signature : robust expression of proposed quiescent ‘ þ 4 ’ cell markers , 2012 .

[49]  M. Bjerknes,et al.  Re-examination of P-PTEN staining patterns in the intestinal crypt , 2005, Nature Genetics.

[50]  Franck Letourneur,et al.  Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1) , 2012, Proceedings of the National Academy of Sciences.

[51]  C. Potten,et al.  Extreme sensitivity of some intestinal crypt cells to X and γ irradiation , 1977, Nature.

[52]  W. de Lau,et al.  Peyer's Patch M Cells Derived from Lgr5+ Stem Cells Require SpiB and Are Induced by RankL in Cultured “Miniguts” , 2012, Molecular and Cellular Biology.

[53]  H. Clevers,et al.  Tissue-resident adult stem cell populations of rapidly self-renewing organs. , 2010, Cell Stem Cell.

[54]  Clayton Hunt,et al.  Identification of a Novel Putative Gastrointestinal Stem Cell and Adenoma Stem Cell Marker, Doublecortin and CaM Kinase‐Like‐1, Following Radiation Injury and in Adenomatous Polyposis Coli/Multiple Intestinal Neoplasia Mice , 2008, Stem cells.

[55]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[56]  H. Clevers,et al.  Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. , 2009, Gastroenterology.

[57]  E. Appella,et al.  Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. , 2007, Cell stem cell.

[58]  O. Klein,et al.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable , 2011, Nature.

[59]  H. Clevers,et al.  Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes , 2011, The EMBO journal.

[60]  Bruce J. Aronow,et al.  The Pan-ErbB Negative Regulator Lrig1 Is an Intestinal Stem Cell Marker that Functions as a Tumor Suppressor , 2012, Cell.

[61]  Christopher S Potten,et al.  The intestinal epithelial stem cell. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[62]  H Cheng,et al.  The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. , 1981, The American journal of anatomy.

[63]  Samuel E. Senyo,et al.  Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry , 2011, Nature.

[64]  H. Clevers,et al.  Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. , 2008, Cold Spring Harbor symposia on quantitative biology.

[65]  E. Fuchs,et al.  Defining the Epithelial Stem Cell Niche in Skin , 2004, Science.

[66]  A. Oudenaarden,et al.  Single-molecule transcript counting of stem-cell markers in the mouse intestine , 2011, Nature Cell Biology.

[67]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.