Tarsal attachment devices of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae)
暂无分享,去创建一个
Elena Gorb | Stanislav Gorb | Lars Heepe | S. Gorb | E. Gorb | J. Michels | G. Salerno | Jan Michels | Manuela Rebora | Gianandrea Salerno | M. Rebora | L. Heepe
[1] S. Gorb,et al. Evolution of locomotory attachment pads of hexapods , 2001, Naturwissenschaften.
[2] T. Endlein,et al. On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays , 2015, PloS one.
[3] Stanislav N. Gorb,et al. A Revised Interpretation of the Evolution of Attachment Structures in Hexapoda with Special Emphasis on Mantophasmatodea , 2006 .
[4] S. Gorb,et al. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata , 2013, Nature Communications.
[5] J. Edwards,et al. The adhesive pads of Heteroptera: a re-examination , 2009 .
[6] S. Gorb,et al. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure , 2014, Beilstein journal of nanotechnology.
[7] S. Gorb,et al. Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae) , 2000, Journal of Comparative Physiology A.
[8] Walter Federle,et al. Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance , 2009, Journal of Experimental Biology.
[9] C. Weirauch. Hairy attachment structures in Reduviidae (Cimicomorpha, Heteroptera), with observations on the fossula spongiosa in some other Cimicomorpha , 2007 .
[10] Stanislav N Gorb,et al. Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects , 2014, Beilstein journal of nanotechnology.
[11] M. Johnson,et al. Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study , 2015, PloS one.
[12] Brigitte Henning,et al. Morphologie und histologie der tarsen von Tettigonia viridissima L. (Orthoptera, Ensifera) , 1974, Zeitschrift für Morphologie der Tiere.
[13] Friction force reduction triggers feet grooming behaviour in beetles , 2011, Proceedings of the Royal Society B: Biological Sciences.
[14] J. Todd. ECOLOGY AND BEHAVIOR OF NEZARA VIRIDULA , 1989 .
[15] S. Gorb,et al. Detailed three‐dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy , 2012, Journal of microscopy.
[16] A. F. G. Dixon,et al. The Mechanism by Which Aphids Adhere to Smooth Surfaces , 1990 .
[17] S. Gorb,et al. Biological Fibrillar Adhesives: Functional Principles and Biomimetic Applications , 2017 .
[18] Heinz Schwarz,et al. Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera) , 2006, Journal of Comparative Physiology A.
[19] R. Full,et al. An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants1 , 2002, Integrative and comparative biology.
[20] Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces , 2018, Scientific Reports.
[21] S. Gorb. Uncovering insect stickiness: structure and properties of hairy attachment devices , 2005 .
[22] W. Barnes,et al. Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives , 2015, Interface Focus.
[23] Y. Jiao,et al. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). , 2000, The Journal of experimental biology.
[24] G. H. C.,et al. The Anatomy of the Honey Bee , 1910, Nature.
[25] Werner Baumgartner,et al. Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface , 2008, Journal of Comparative Physiology A.
[26] S. Gorb. Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.
[27] Christofer J Clemente,et al. Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches , 2008, Proceedings of the Royal Society B: Biological Sciences.
[28] Stanislav N. Gorb,et al. Smooth attachment devices in insects: Functional morphology and biomechanics , 2007 .
[29] S. Gorb,et al. Surface roughness rather than surface chemistry essentially affects insect adhesion , 2016, Beilstein journal of nanotechnology.
[30] R. Beutel,et al. Fly on the wall – attachment structures in lower Diptera , 2014 .
[31] David Labonte,et al. Functionally Different Pads on the Same Foot Allow Control of Attachment: Stick Insects Have Load-Sensitive “Heel” Pads for Friction and Shear-Sensitive “Toe” Pads for Adhesion , 2013, PloS one.
[32] L. Frantsevich,et al. Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. , 2004, Arthropod structure & development.
[33] S. Gorb,et al. Spring model of biological attachment pads. , 2006, Journal of theoretical biology.
[34] Jocelia Grazia,et al. Stink Bugs (Pentatomidae) , 2015 .
[35] Stanislav N. Gorb,et al. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny , 2001 .
[36] Marion D. Kendall,et al. The Anatomy of the Tarsi of Schistocerca gregaria Forskål , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[37] Dagmar Voigt,et al. Plant surface–bug interactions: Dicyphus errans stalking along trichomes , 2007, Arthropod-Plant Interactions.
[38] E. Gorb,et al. Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae) , 2017, Journal of Comparative Physiology A.
[39] Matthias Scherge,et al. Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects1 , 2002, Integrative and comparative biology.
[40] S. Gorb,et al. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.
[41] L. Frantsevich,et al. Alternative Tasks of the Insect Arolium with Special Reference to Hymenoptera , 2009 .
[42] S. Gorb,et al. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). , 2002, The Journal of experimental biology.
[43] S. Gorb,et al. Evolutionary scenarios for unusual attachment devices of Phasmatodea and Mantophasmatodea (Insecta) , 2008 .
[44] Stanislav N Gorb,et al. Structure and function of the arolium of Mantophasmatodea (Insecta) , 2009, Journal of morphology.
[45] W. Barnes,et al. Adhesion and Detachment of the Toe Pads of Tree Frogs , 1991 .
[46] Stanislav N Gorb,et al. Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta) , 2004, Journal of Experimental Biology.
[47] S. Zill,et al. Elasticity and movements of the cockroach tarsus in walking , 1999, Journal of Comparative Physiology A.
[48] S. Gorb,et al. Functional diversity of resilin in Arthropoda , 2016, Beilstein journal of nanotechnology.
[49] R. Beutel,et al. Morphology of arolia in Auchenorrhyncha (Insecta, Hemiptera) , 2014, Journal of morphology.
[50] L. Frantsevich,et al. Arcus as a tensegrity structure in the arolium of wasps (Hymenoptera: Vespidae). , 2002, Zoology.
[51] Thomas A. McMahon,et al. Biomechanics of the movable pretarsal adhesive organ in ants and bees , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[52] L. Lu,et al. Temperature‐ and food‐dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) , 2020, Physiological Entomology.
[53] L. Roth,et al. Tarsal structure and climbing ability of cockroaches , 1952 .
[54] Fritz-Olaf Lehmann,et al. Neural control and precision of flight muscle activation in Drosophila , 2016, Journal of Comparative Physiology A.
[55] U. Schwarz,et al. Chemical composition of the attachment pad secretion of the locust Locusta migratoria. , 2002, Insect biochemistry and molecular biology.
[56] Jim Hardie,et al. THE ORGANS OF ADHESION IN THE APHID MEGOURA VICIAE , 1988 .
[57] S. Gorb,et al. Hexagonal Surface Micropattern for Dry and Wet Friction , 2009 .
[58] S N Gorb,et al. Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. , 2008, Journal of insect physiology.
[59] W. Barnes,et al. Comparative Cryo‐SEM and AFM studies of hylid and rhacophorid tree frog toe pads , 2013, Journal of morphology.
[60] S. Gorb,et al. Functional Surfaces in the Pitcher of the Carnivorous Plant Nepenthes alata: A Cryo-Sem Approach , 2009 .
[61] Stanislav N. Gorb,et al. Biological Micro- and Nanotribology: Nature’s Solutions , 2010 .
[62] W. Federle,et al. Fluid-based adhesion in insects – principles and challenges , 2011 .
[63] R. Beutel,et al. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda) , 2014, Cladistics : the international journal of the Willi Hennig Society.