Tarsal attachment devices of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae)

Based on analyses with cryo‐scanning and transmission electron microscopy, the present study reports on the morphology and ultrastructure of the attachment structures of the green stinkbug Nezara viridula L. (Heteroptera: Pentatomidae), a cosmopolitan pest of different crops in most areas of the world. In addition, the presence and distribution of large proportions of the elastic protein resilin in these structures was revealed by confocal laser scanning microscopy. The attachment structures of each leg comprise two sclerotised claws, a pair of smooth flexible pulvilli and a hairy adhesive pad located at the ventral side of the basitarsus. No sexual dimorphism is evident. Contact areas of resting individuals on a smooth surface show that N. viridula creates contact to the substrate with the ventral surface of (a) the distal portions of the pulvilli, (b) the setae of the hairy adhesive pad, (c) the two paraempodia representing mechanosensory setae, and (d) the tips of the claws. Each pulvillus is a sac‐like structure formed by complex cuticular layers that vary in their structure and resilin content. The dorsal side consists of sclerotised chitinous material, while the ventral cuticle consists mainly of resilin and shows a very thin epicuticle and a thick exocuticle. The setae of the hairy adhesive pad are pointed and socketed. They exhibit a pronounced longitudinal gradient in the material composition, with large proportions of resilin being present in the setal tips. In most of these setae, especially in those of the distal‐most part of the pad, also a transverse gradient in the material composition is visible.

[1]  S. Gorb,et al.  Evolution of locomotory attachment pads of hexapods , 2001, Naturwissenschaften.

[2]  T. Endlein,et al.  On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays , 2015, PloS one.

[3]  Stanislav N. Gorb,et al.  A Revised Interpretation of the Evolution of Attachment Structures in Hexapoda with Special Emphasis on Mantophasmatodea , 2006 .

[4]  S. Gorb,et al.  Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata , 2013, Nature Communications.

[5]  J. Edwards,et al.  The adhesive pads of Heteroptera: a re-examination , 2009 .

[6]  S. Gorb,et al.  Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure , 2014, Beilstein journal of nanotechnology.

[7]  S. Gorb,et al.  Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae) , 2000, Journal of Comparative Physiology A.

[8]  Walter Federle,et al.  Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance , 2009, Journal of Experimental Biology.

[9]  C. Weirauch Hairy attachment structures in Reduviidae (Cimicomorpha, Heteroptera), with observations on the fossula spongiosa in some other Cimicomorpha , 2007 .

[10]  Stanislav N Gorb,et al.  Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects , 2014, Beilstein journal of nanotechnology.

[11]  M. Johnson,et al.  Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study , 2015, PloS one.

[12]  Brigitte Henning,et al.  Morphologie und histologie der tarsen von Tettigonia viridissima L. (Orthoptera, Ensifera) , 1974, Zeitschrift für Morphologie der Tiere.

[13]  Friction force reduction triggers feet grooming behaviour in beetles , 2011, Proceedings of the Royal Society B: Biological Sciences.

[14]  J. Todd ECOLOGY AND BEHAVIOR OF NEZARA VIRIDULA , 1989 .

[15]  S. Gorb,et al.  Detailed three‐dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy , 2012, Journal of microscopy.

[16]  A. F. G. Dixon,et al.  The Mechanism by Which Aphids Adhere to Smooth Surfaces , 1990 .

[17]  S. Gorb,et al.  Biological Fibrillar Adhesives: Functional Principles and Biomimetic Applications , 2017 .

[18]  Heinz Schwarz,et al.  Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera) , 2006, Journal of Comparative Physiology A.

[19]  R. Full,et al.  An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants1 , 2002, Integrative and comparative biology.

[20]  Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces , 2018, Scientific Reports.

[21]  S. Gorb Uncovering insect stickiness: structure and properties of hairy attachment devices , 2005 .

[22]  W. Barnes,et al.  Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives , 2015, Interface Focus.

[23]  Y. Jiao,et al.  Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). , 2000, The Journal of experimental biology.

[24]  G. H. C.,et al.  The Anatomy of the Honey Bee , 1910, Nature.

[25]  Werner Baumgartner,et al.  Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface , 2008, Journal of Comparative Physiology A.

[26]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[27]  Christofer J Clemente,et al.  Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches , 2008, Proceedings of the Royal Society B: Biological Sciences.

[28]  Stanislav N. Gorb,et al.  Smooth attachment devices in insects: Functional morphology and biomechanics , 2007 .

[29]  S. Gorb,et al.  Surface roughness rather than surface chemistry essentially affects insect adhesion , 2016, Beilstein journal of nanotechnology.

[30]  R. Beutel,et al.  Fly on the wall – attachment structures in lower Diptera , 2014 .

[31]  David Labonte,et al.  Functionally Different Pads on the Same Foot Allow Control of Attachment: Stick Insects Have Load-Sensitive “Heel” Pads for Friction and Shear-Sensitive “Toe” Pads for Adhesion , 2013, PloS one.

[32]  L. Frantsevich,et al.  Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. , 2004, Arthropod structure & development.

[33]  S. Gorb,et al.  Spring model of biological attachment pads. , 2006, Journal of theoretical biology.

[34]  Jocelia Grazia,et al.  Stink Bugs (Pentatomidae) , 2015 .

[35]  Stanislav N. Gorb,et al.  Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny , 2001 .

[36]  Marion D. Kendall,et al.  The Anatomy of the Tarsi of Schistocerca gregaria Forskål , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[37]  Dagmar Voigt,et al.  Plant surface–bug interactions: Dicyphus errans stalking along trichomes , 2007, Arthropod-Plant Interactions.

[38]  E. Gorb,et al.  Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae) , 2017, Journal of Comparative Physiology A.

[39]  Matthias Scherge,et al.  Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects1 , 2002, Integrative and comparative biology.

[40]  S. Gorb,et al.  Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.

[41]  L. Frantsevich,et al.  Alternative Tasks of the Insect Arolium with Special Reference to Hymenoptera , 2009 .

[42]  S. Gorb,et al.  Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). , 2002, The Journal of experimental biology.

[43]  S. Gorb,et al.  Evolutionary scenarios for unusual attachment devices of Phasmatodea and Mantophasmatodea (Insecta) , 2008 .

[44]  Stanislav N Gorb,et al.  Structure and function of the arolium of Mantophasmatodea (Insecta) , 2009, Journal of morphology.

[45]  W. Barnes,et al.  Adhesion and Detachment of the Toe Pads of Tree Frogs , 1991 .

[46]  Stanislav N Gorb,et al.  Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta) , 2004, Journal of Experimental Biology.

[47]  S. Zill,et al.  Elasticity and movements of the cockroach tarsus in walking , 1999, Journal of Comparative Physiology A.

[48]  S. Gorb,et al.  Functional diversity of resilin in Arthropoda , 2016, Beilstein journal of nanotechnology.

[49]  R. Beutel,et al.  Morphology of arolia in Auchenorrhyncha (Insecta, Hemiptera) , 2014, Journal of morphology.

[50]  L. Frantsevich,et al.  Arcus as a tensegrity structure in the arolium of wasps (Hymenoptera: Vespidae). , 2002, Zoology.

[51]  Thomas A. McMahon,et al.  Biomechanics of the movable pretarsal adhesive organ in ants and bees , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. Lu,et al.  Temperature‐ and food‐dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) , 2020, Physiological Entomology.

[53]  L. Roth,et al.  Tarsal structure and climbing ability of cockroaches , 1952 .

[54]  Fritz-Olaf Lehmann,et al.  Neural control and precision of flight muscle activation in Drosophila , 2016, Journal of Comparative Physiology A.

[55]  U. Schwarz,et al.  Chemical composition of the attachment pad secretion of the locust Locusta migratoria. , 2002, Insect biochemistry and molecular biology.

[56]  Jim Hardie,et al.  THE ORGANS OF ADHESION IN THE APHID MEGOURA VICIAE , 1988 .

[57]  S. Gorb,et al.  Hexagonal Surface Micropattern for Dry and Wet Friction , 2009 .

[58]  S N Gorb,et al.  Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. , 2008, Journal of insect physiology.

[59]  W. Barnes,et al.  Comparative Cryo‐SEM and AFM studies of hylid and rhacophorid tree frog toe pads , 2013, Journal of morphology.

[60]  S. Gorb,et al.  Functional Surfaces in the Pitcher of the Carnivorous Plant Nepenthes alata: A Cryo-Sem Approach , 2009 .

[61]  Stanislav N. Gorb,et al.  Biological Micro- and Nanotribology: Nature’s Solutions , 2010 .

[62]  W. Federle,et al.  Fluid-based adhesion in insects – principles and challenges , 2011 .

[63]  R. Beutel,et al.  Evolution of attachment structures in the highly diverse Acercaria (Hexapoda) , 2014, Cladistics : the international journal of the Willi Hennig Society.